A unital -algebra endowed with the Lie product on is called a Lie -algebra. Let be a Lie -algebra and be -linear mappings. A -linear mapping is called a Lie --double derivation if for all . In this paper, our main purpose is to prove the generalized Hyers–Ulam–Rassias stability of Lie -double derivations on Lie -algebras associated with the following additive mapping: for a fixed positive integer with
Ghobadipour, N. (2010). Lie -double derivations on Lie -algebras. International Journal of Nonlinear Analysis and Applications, 1(2), 63-71. doi: 10.22075/ijnaa.2010.76
MLA
Ghobadipour, N. . "Lie -double derivations on Lie -algebras", International Journal of Nonlinear Analysis and Applications, 1, 2, 2010, 63-71. doi: 10.22075/ijnaa.2010.76
HARVARD
Ghobadipour, N. (2010). 'Lie -double derivations on Lie -algebras', International Journal of Nonlinear Analysis and Applications, 1(2), pp. 63-71. doi: 10.22075/ijnaa.2010.76
CHICAGO
N. Ghobadipour, "Lie -double derivations on Lie -algebras," International Journal of Nonlinear Analysis and Applications, 1 2 (2010): 63-71, doi: 10.22075/ijnaa.2010.76
VANCOUVER
Ghobadipour, N. Lie -double derivations on Lie -algebras. International Journal of Nonlinear Analysis and Applications, 2010; 1(2): 63-71. doi: 10.22075/ijnaa.2010.76