[1] M. Abdrakhmanova, A. Kuzdeuov, S. Jarju, Y. Khassanov, M. Lewis and H.A. Varol, Speaking Faces: a large-scale multimodal dataset of voice commands with visual and thermal video streams, Sensors 21 (2021), no. 10, p. 3465.
[2] T. Afouras, J.S. Chung, A. Senior, O. Vinyals and A. Zisserman, Deep audio-visual speech recognition, IEEE Trans. Pattern Anal. Machine Intel. 44 (2018), no. 12, 8717–8727.
[3] H. Al-Sadr, M. Popescu and J.M. Keller, Early sepsis recognition based on infrared thermography, Int. J. Data Min. Bioinf. 22 (2019), no. 4, 301–327.
[4] R. Ashrafi, M. Azarbayjani and H. Tabkhi, A novel fully annotated thermal infrared face dataset: recorded in various environment conditions and distances from the camera, Infrared Phys. Technol. 124 (2022).
[5] A. Barnawi, P. Chhikara, R. Tekchandani, N. Kumar and B. Alzahrani, Artificial intelligence-enabled internet of things-based system for COVID-19 screening using aerial thermal imaging, Future Generat. Comput. Syst. 124 (2021), 119–132.
[6] M.L. Brioschi, C.D. Neto, M. de Toledo, E.B. Neves, J.V.C. Vargas and M.J. Teixeira, Infrared image method for possible COVID-19 detection through febrile and subfebrile people screening, J. Thermal Bio. 112 (2023), 103444.
[7] Q. Cai, D. Gallup, C. Zhang and Z. Zhang, 3d deformable face tracking with a commodity depth camera, Comput. Vision–ECCV 2010: 11th Eur. Conf. Comput. Vision, Heraklion, Crete, Greece, Proc. Part III 11, Springer Berlin Heidelberg, 2010, pp. 229–242.
[8] Z. Chen, S. Wang and Y. Qian, Multi-modality matters: A performance leap on VoxCeleb, INTERSPEECH, October 25–29, 2020, Shanghai, China, 2020, pp. 2252–2256.
[9] C.E. Cooper and P.C. Withers, Postural, pilo-erective and evaporative thermal windows of the short-beaked echidna (Tachyglossus aculeatus), Bio. Lett. 19 (2023), no. 1, p. 20220495.
[10] V. Espinosa-Duro, M. Faundez-Zanuy and J. Mekyska, A new face database simultaneously acquired in visible, near-infrared and thermal spectrums, Cognit. Comput. 5 (2013), 119–135.
[11] R. Gade and T.B. Moeslund, Thermal cameras and applications: A survey, Mach. Vis. Appl. 25 (2014), 245–262.
[12] S. Garrido-Jurado, R. Mu˜noz-Salinas, F.J. Madrid-Cuevas and M.J. Marın-Jimenez, Automatic generation and detection of highly reliable fiducial markers under occlusion, Pattern Recognit. 47 (2014), 2280–2292.
[13] R.S. Ghiass, H. Bendada and X. Maldague, Universite laval face motion and time-lapse video database (ULFMTV), Technical Report; Universite Laval: Quebec, QC, Canada, 2018.
[14] R.I. Hammoud, IEEE OTCBVS WS series bench, http://vcipl-okstate.org/pbvs/bench/.
[15] G.B. Huang, M. Mattar, T. Berg and E. Learned-Miller, Labeled faces in the wild: A database for studying face recognition in unconstrained environments, In Workshop on faces in’Real-Life’Images: detection, alignment, and recognition, 2008.
[16] P. Katte, S.T. Kakileti, H.J. Madhu and G. Manjunath, Automated thermal screening for COVID-19 using machine learning, Artific. Intell. over Infrared Images Med. Appl. Med. Image Assisted Biomarker Discovery, MIABID AIIIMA 2022, Lecture Notes in Computer Science, Springer, Cham, 2022.
[17] Z. Ma, H. Li, W. Fang, Q. Liu, B. Zhou and Z. Bu, A cloud-edge-terminal collaborative system for temperature measurement in COVID-19 prevention, IEEE INFOCOM 2021-IEEE Conf. Comput. Commun. Workshops (INFOCOM WKSHPS), IEEE, 2021, pp. 1–6.
[18] A.C. Makino Antunes, A. Aldred, G.P. Tirado Moreno, J.A. de Souza Ribeiro, P.E. Brand˜ao, G.T. Barone, J.D.A. Conselheiro, A.C. Goulart, I.C. Desuo and G. Gomes, Potential of using facial thermal imaging in patient triage of flu-like syndrome during the COVID-19 pandemic crisis, PloS one 18 (2023), no. 1, 0279930.
[19] K. Mallat and J.L. Dugelay, A benchmark database of visible and thermal paired face images across multiple variations, Int. Conf. Biomet. Spec. Interest Group (BIOSIG), IEEE, 2018, pp. 1–5.
[20] K. Panetta, Q. Wan, S. Agaian, S. Rajeev, S. Kamath, R. Rajendran, S.P. Rao, A. Kaszowska, H.A. Taylor, A. Samani and X. Yuan, A comprehensive database for benchmarking imaging systems, IEEE Trans. Pattern Anal. Mach. Intell. 42 (2018), 509–520.
[21] D. Poster, M. Thielke, R. Nguyen, S. Rajaraman, X. Di, C.N. Fondje, V.M. Patel, N.J. Short, B.S. Riggan, N.M. Nasrabadi and S. Hu, A large-scale, time-synchronized visible and thermal face dataset, Proc. IEEE/CVF Winter Conf. Appl. Comput. Vision, 2021, pp. 1559–1568.
[22] S. Ren, K. He, R. Girshick and J. Sun, Faster r-cnn: Towards real-time object detection with region proposal networks, Adv. Neural Info. Process. Syst. 28 (2015), 91–99.
[23] D.J. R-FCN, Object detection via region-based fully convolutional networks, Adv. Neural Inf. Process. Syst., 2016, pp. 379–387.
[24] A. Scarano, F. Inchingolo and F. Lorusso, Facial skin temperature and discomfort when wearing protective face masks: thermal infrared imaging evaluation and hands moving the mask, Int. J. Environ. Res. Public Health 17 (2020), no. 13, 4624.
[25] S. Shon, T. Oh and J. Glass, Noise-tolerant audio-visual online person verification using an attention-based neural network fusion, ICASSP 2019-2019 IEEE Int. Conf. Acoustics, Speech and Signal Process. (ICASSP), IEEE, 2019, pp. 3995–3999.
[26] R.S.S. Singh, T.J.S. Anand, S.A. Anas and B. Acharya, A real-time analytic face thermal recognition system integrated with email notification, Eng. Technol. Appl. Sci. Res. 13 (2023), no. 1, 9961–9967.
[27] S. Wang, Z. Liu, S. Lv, Y. Lv, G. Wu, P. Peng, F. Chen and X. Wang, A natural visible and infrared facial expression database for expression recognition and emotion inference, IEEE Trans. Multimed. 12 (2010), 682–691.
[28] World Health Organization (WHO), https://www.who.int.
[29] W. Zhou, Y. Zhu, J. Lei, R. Yang and L. Yu, LSNet: Lightweight spatial boosting network for detecting salient objects in RGB-thermal images, EEE Trans. Image Process. 32 (2023), 1329–1340.