[1] L.H.R. Alvarez, Singular stochastic control linear diffusion and optimal stopping: a class of solvable problems, SIAM J. Control Optim. 39 (2001), 1697–1710.
[2] J.F. Bonnans and FJ. Silva, First and second order necessary conditions for stochastic optimal control problems,
Appl. Math. Optim. 65 (2012), 403–439. [3] R. Buckdahn, J. Li, and J. Ma, A stochastic maximum principle for general mean-field system, Appl. Math. Optim. 74 (2016), 507–534.
[4] R. Buckdahn, B. Djehiche, and J. Li. A general stochastic maximum principle for SDEs of mean-field type. Appl. Math. Optim. 64 (2011), 197–216.
[5] A. Cadenillas and U. Haussman, The stochastic maximum principle for singular control problem, Stochastics: Int. J. Probab. Stochastic Proces. 49 (1994), no 3-4, 211–237.
[6] P. Cardaliaguet, Notes on mean field games (from P.-L. Lions’ lectures at Coll`ege de France), Lecture Notes given at Tor Vergata, 2010.
[7] R. Carmona and F. Delarue, Forward-backward stochastic differential equations and controlled McKean-Vlasov dynamics, Ann. Probab. 43 (2015), no. 5, 2647–2700.
[8] R. Deepa and P. Muthukumar, Infinite horizon optimal control of mean-field delay system with semi-Markov modulated jump-diffusion processes, J. Anal. 27 (2019), 623–641.
[9] Y. Dong and Q. Meng, Second-order necessary conditions for optimal control with recursive utilities, J. Optim. Theory Appl. 182 (2019), no. 2, 494–524.
[10] F. Dufour and B. Miller, Necessary conditions for optimal singular stochastic control problems, Stochastics 79 (2007), no. 5, 469–504.
[11] H. Frankowska, H. Zhang, and X. Zhang, First and second order necessary conditions for stochastic optimal controls, J. Differ. Equ. 262 (2017), no. 6, 3689–3736.
[12] A. Ghoul, M. Hafayed, I.D Lakhdari, and S. Meherrem, Pointwise second-order necessary conditions for stochastic optimal control with jump diffusions, Commun. Math. Stat. (2022) https://doi.org/10.1007/s40304-021-00272-5.
[13] M. Hafayed, S. Abbas, and A. Abba, On mean-field partial information maximum principle of optimal control for stochastic systems with Levy processes, J. Optim Theory Appl. 167 (2015), 1051–1069.
[14] M. Hafayed, A. Abba, and S. Abbas, On partial-information optimal singular control problem for mean-field stochastic differential equations driven by Teugels martingales measures, Internat. J. Control 89 (2016), no. 2, 397–410.
[15] M. Hafayed, A mean-field necessary and sufficient conditions for optimal singular stochastic control, Commun. Math. Stat. 1 (2014), no. 4, 417–435.
[16] M. Hafayed, S. Boukaf, Y. Shi, and S. Meherrem, A McKean-Vlasov optimal mixed regular-singular control problem, for nonlinear stochastic systems with Poisson jump processes, Neurocomputing 182 (2016), no. 19, 133–144.
[17] M. Hafayed, S. Meherrem, S. Eren, and D.H Guoclu, On optimal singular control problem for general McKean-Vlasov differential equations: Necessary and sufficient optimality conditions, Optim. Control Appl. Meth. 39 (2018), 1202–1219.
[18] T. Hao and Q. Meng: A second-order maximum principle for singular optimal controls with recursive utilities of stochastic delay systems, Eur. J. Control 50 (2019), 96–106.
[19] T. Hao, Q. Meng Singular optimal control problems with recursive utilities of mean-field type, Asian J. Control 23 (2021), no. 3, 1524–1535.
[20] M. Huang, P. Caines, and R. Malhame, Large-population cost-coupled LQG problems with nonuniformagents: individual-mass behavior and decentralized ϵ-Nash equilibria, IEEE Trans. Automatic Control 52 (2007), 1560–1571.
[21] S. Peng, A general stochastic maximum principle for optimal control problems, SIAM J. Control Optim. 2 (1990), no. 4, 966–979.
[22] H. Pham, Linear quadratic optimal control of conditional McKean-Vlasov equation with random coefficients and applications, Probab. Uncertain. Quant. Risk 1 (2016), no. 7, 1–26.
[23] M. Kac, Foundations of kinetic theory, Proc. 3-rd Berkeley Sympos, Math. Statist. Prob. 3 (1956), 171–197.
[24] J.M. Lasry, P.L, Lions, Mean-field games, Japan J. Math. 2 (2007), no. 1, 229–260.
[25] P.L. Lions, Cours au College de France: Th`eorie des jeux a champ moyens, Audioconference (2012), 2006–2012.
[26] H.P. McKean, A class of Markov processes associated with nonlinear parabolic equations, Proc. Natl. Acad. Sci. USA 56 (1966), 1907–1911.
[27] Q. Meng and Y. Shen, Optimal control of mean-field jump-diffusion systems with delay: A stochastic maximum principle approach, J. Comput. Appl. Math. 279 (2015), 13–30.
[28] G.Wang, C. Hang, and W. Zhang: Stochastic maximum principle for mean-field type optimal control under partial information, IEEE Trans. Automatic Control 59 (2014), no. 2, 522–528.
[29] Y. Shen, Q. Meng, and P. Shi, Maximum principle for mean-field jump-diffusions to stochastic delay differential equations and its applications to finance, Automatica 50 (2014), 1565–1579.
[30] S. Tang, A second-order maximum principle for singular optimal stochastic controls, Discrete Continuous Dyn.Syst. Ser. B. 14 (2010), no. 4, 1581–1599.
[31] H. Zhang and X. Zhang, Pointwise second-order necessary conditions for stochastic optimal controls, Part I: The case of convex control constraint, SIAM J. Control Optim. (2015), no. 4, 2267–2296.
[32] H. Zhang and X. Zhang, Pointwise second-order necessary conditions for stochastic optimal controls, part II: The general case, SIAM J. Control Optim. 55 (2017), no. 5, 2841–2875.