[1] J. Barrau, S. Riera, E. Leveille, L. G. Frechette and J. I. Rosell, Nozzle to plate optimization of the jet impingement inlet of a tailored-width microchannel heat exchanger, Experiment. Thermal Fluid Sci.67 (2015), 81–87.
[2] R. Fernandez-Feria, E. Sanmiguel-Rojas and E.S. Benilov, On the origin and structure of a stationary circular hydraulic jump, Phys. Fluids 31 (2019), no. 7, 072104.
[3] R.J. Goldstein and M.E. Franchett, Heat transfer from a flat surface to an oblique impinging jet, J. Heat Transfer 110 (1988), no. 1, 84–90.
[4] A. Ianiro and G. Cardone, Heat transfer rate and uniformity in multichannel swirling impinging jets, Appl. Thermal Engin. 49 (2012), 89–98.
[5] K. Jambunathan, E. Lai, M. Moss and B.L. Button, A review of heat transfer data for single circular jet impingement, Int. J. Heat Fluid Flow 13 (1999), no. 2, 106–115.
[6] M.F. Koseoglu and S. Baskaya, The role of jet inlet geometry in impinging jet heat transfer, modeling and experiments, Int. J. Thermal Sci. 49 (2010), no. 8, 1417-1426.
[7] A.M. Kuraan, S.I. Moldovan and K. Choo, Heat transfer and hydrodynamics of free water jet impingement at low nozzle-to-plate spacings, Int. J. Heat Mass Transfer 108 (2017), 2211–2216.
[8] M.D. Le, C.M. Hsu, N. Kholili and S.H. Lu, Effects of axial jet-to-wall distance on flow behavior and heat transfer of a wall jet at low Reynolds number, IEEE Int. Conf. Adv. Manufact. (ICAM), 2018, pp. 73–76.
[9] D.H. Lee, J. Song and M. C. Jo, The effects of nozzle diameter on impinging jet heat transfer and fluid flow, J. Heat Transfer 126 (2004), no. 4, 554–557.
[10] O. Manca, P. Mesolella, S. Nardini and D. Ricci, Numerical study of a confined slot impinging jet with nanofluids, Nanoscale Res. Lett. 6 (2011), no. 1, 1–16.
[11] H. Martin, Heat and mass transfer between impinging gas jets and solid surfaces, Adv. Heat Transfer 13 (1977), 1–60.
[12] M. Molana and S. Banooni, Investigation of heat transfer processes involved liquid impingement jets: a review, Brazil. J. Chem. Engin. 30 (2013), 413–435.
[13] L. Nakharintr, P. Naphon and S. Wiriyasart, Effect of jet-plate spacing to jet diameter ratios on nanofluids heat transfer in a mini-channel heat sink, Int. J. Heat Mass Transfer 116 (2018), 352–361.
[14] K. Nanan, K. Wongcharee, C. Nuntadusit and S. Eiamsa-Ard, Forced convective heat transfer by swirling impinging jets issuing from nozzles equipped with twisted tapes, Int. Commun. Heat Mass Transfer 39 (2012), no. 6, 844–852.
[15] P. Naphon, L. Nakharintr and S. Wiriyasart, Continuous nanofluids jet impingement heat transfer and flow in a micro-channel heat sink, Int. J. Heat Mass Transfer 126 (2018), 924–932.
[16] H. Samma, A. Khosrojerdi, M. Rostam-Abadi, M. Mehraein, and Y. Catano-Lopera, Numerical simulation of scour and flow field over movable bed induced by a submerged wall jet, J. Hydroinform. 22 (2020), no. 2, 385–401.
[17] B. Weigand and S. Spring, Multiple jet impingement, TURBINE-09. Proc. Int. Symp. Heat Transfer in Gas Turbine Syst., Begel House Inc., 2009.
[18] P. Xu, B. Yu, S. Qiu, H. J. Poh and A.S. Mujumdar, Turbulent impinging jet heat transfer enhancement due to intermittent pulsation, Int J Thermal Sci 49 (2010), no. 7, 1247–1252.
[19] Y.T. Yang and F.H. Lai, Numerical study of heat transfer enhancement with the use of nanofluids in radial flow cooling system, Int Jo Heat Mass Transfer 53 (2010), no. 25-26, 5895–5904.