[1] M.M. Abdelgwad, T.H.A. Soliman, A.I. Taloba, and M.F. Farghaly, Arabic aspect-based sentiment analysis using bidirectional GRU based models, J. King Saud Univer. Comput. Inf. Sci. 34 (2022) no. 9, 6652–6662.
[2] M. Adnan, R. Sarno, and K.R. Sungkono, Sentiment analysis of restaurant review with classification approach in the decision tree-J48 algorithm, Int. Seminar Appl. Technol. Inf. Commun. (iSemantic), IEEE, 2019, pp. 121–126.
[3] R. Akhoundzade and K. H. Devin, Persian sentiment lexicon expansion using unsupervised learning methods, 9th Int. Conf. Comput. Knowledge Engin. (ICCKE), IEEE, 2019, 461–465.
[4] M. Alqmase and H. Al-Muhtaseb, Sport-fanaticism lexicons for sentiment analysis in Arabic social text, Soc. Network Anal. Min. 12 (2022) no. 1, 1–16.
[5] R. Aly, S. Remus, and C. Biemann, Hierarchical multi-label classification of text with capsule networks, Proc. 57th Ann. Meet. Assoc. Comput. Linguist.: Student Research Workshop, 2019, pp. 323–330.
[6] E. Asgarian, M. Kahani, and S. Sharifi, The impact of sentiment features on the sentiment polarity classification in Persian reviews, Cognitive Comput. 10 (2018) no. 1, 117–135.
[7] M.E. Basiri, A. Kabiri, M. Abdar, W.K. Mashwani, N.Y. Yen, and J.C. Hung, The effect of aggregation methods on sentiment classification in Persian reviews, Enterprise Inf. Syst. 14 (2020), no. 9-10, 1394–1421.
[8] Z. Chen and T. Qian, Transfer capsule network for aspect level sentiment classification, Proc. 57th Ann. Meet. Assoc. Comput. Linguistics, 2019, pp. 547–556.
[9] M. Dragoni and G. Petrucci, A neural word embeddings approach for multi-domain sentiment analysis, IEEE Trans. Affect. Comput. 8 (2017) no. 4, 457–470.
[10] M. Dragoni and G. Petrucci, A fuzzy-based strategy for multi-domain sentiment analysis, Int. J. Approx. Reason. 93 (2018), 59–73.
[11] K. Dashtipour, M. Gogate, E. Cambria, A. Hussain, A novel context-aware multimodal framework for Persian sentiment analysis, Neurocomputing 457 (2021), 377–388.
[12] F. Deng, S. Pu, X. Chen, Y. Shi, T. Yuan, and S. Pu, Hyperspectral image classification with capsule network using limited training samples, Sensors 18 (2018) no. 9, 3153.
[13] A. Farghaly and K. Shaalan, Arabic natural language processing: Challenges and solutions, ACM Trans. Asian Language Inf. Process. 8 (2009) no. 4, 1–22.
[14] Y. Geng and X. Luo, Cost-sensitive convolution based neural networks for imbalanced time-series classification, arXiv preprint arXiv:1801.04396, 2018.
[15] M.K. Habib, The challenges of Persian user-generated textual content: A machine learning-based approach, arXivpreprint arXiv:2101.08087, 2021.
[16] M. Hajighorbani, S.R. Hashemi, B. Minaei-Bidgoli, S. Safari, A review of some semi-supervised learning methods, IEEE First Int. Conf. New Res. Achiev. Electric. Comput. Engin., 2016, pp. 1–10.
[17] S.M.R. Hashemi, H. Hassanpour, E. Kozegar, and T. Tan, Cystoscopic image classification by unsupervised feature learning and fusion of classifiers, IEEE Access 9 (2021), 126610–126622.
[18] J. Joseph, S. Vineetha, N.V. Sobhana, A survey on deep learning based sentiment analysis, Mater. Today: Proc. 58 (2022), 456–460.
[19] J. Kim, S. Jang, E. Park, and S. Choi, Text classification using capsules, Neurocomputing 376 (2020), 214–221.
[20] A.P. Kirilenko, S.O. Stepchenkova, H. Kim, and X. Li, Automated sentiment analysis in tourism: Comparison of approaches, J. Travel Res. 57 (2018), no. 8, 1012–1025.
[21] H. Kaur and V. Mangat, A survey of sentiment analysis techniques, Int. Conf. I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC), 2017, pp. 921–925.
[22] S.M. Khabour, Q.A. Al-Radaideh, and D. Mustafa, A new ontology-based method for Arabic sentiment analysis, Big Data Cognitive Comput. 6 (2022) no. 2, 48.
[23] N.A. Khayi and V. Rus, Bi-gru capsule networks for student answers assessment, KDD Workshop on Deep Learning for Education (DL4Ed), 2019.
[24] M. Kwabena Patrick, A. Felix Adekoya, A. Abra Mighty, and B.Y. Edward, Capsule Networks-A survey, J. King Saud Univer. Comput. Inf. Sci. 34 (2022), no. 1, 1295–1310.
[25] Z.C. Lipton, J. Berkowitz, and C. Elkan, A critical review of recurrent neural networks for sequence learning, arXiv preprint arXiv:1506.00019, 2015.
[26] Y. Long, L. Qin, R. Xiang, M. Li, and C.-R. Huang, A cognition-based attention model for sentiment analysis, Proc. Conf. Empir. Meth. Nat. Language Proces., 2017, pp. 462-471.
[27] M. Mohd and R. Hashmy, Opinions mining of Twitter events using spatial-temporal features, J. Artific. Intell. Res. Adv. 5 (2018) no. 2, 36–44.
[29] M. Mohammadpour, H. Khaliliardali, S.M.R. Hashemi, and M. AlyanNezhadi, Facial emotion recognition using deep convolutional networks, IEEE 4th Int. Conf. Knowledge-Based Engin. Innov. (KBEI), 2017, pp. 17–21.
[30] H.H. Nguyen, J. Yamagishi, and I. Echizen, Capsule-forensics: Using capsule networks to detect forged images and videos, ICASSP IEEE Int. Conf. Acoustics Speech Signal Process. (ICASSP), 2019, pp. 2307–2311.
[31] J.M. Perea-Ortega, L.A. Urena-Lopez, M. Rushdi-Saleh, and M.T. Martın-Valdivia, Oca: Opinion corpus for Arabic, J. Amer. Soc. Inf. Sci. Technol. 62 (2011) no. 10, 2045–2054.
[32] G. Petrucci and M. Dragoni, The IRMUDOSA system at ESWC-2018 challenge on semantic sentiment analysis, SemanticWeb Challenges: 5th SemWebEval Challenge at ESWC 2018, Heraklion, Greece, June 3–7, 2018, Revised Selected Papers 5, Springer International Publishing, 2018, pp. 167–185.
[33] P. Rathnayaka, S. Abeysinghe, C. Samarajeewa, I. Manchanayake, and M.Walpola, Sentylic at IEST 2018: Gated recurrent neural network and capsule network-based approach for implicit emotion detection,” arXiv preprint arXiv:1809.01452, 2018.
[34] S. Sabour, N. Frosst, and G.E. Hinton, Dynamic routing between capsules, Adv. Neural Inf. Process. Syst. 30 (2017), 3856–3866.
[35] C. Sammut and G.I. Webb, Encyclopedia of Machine Learning, Springer Science & Business Media, 2011.
[36] M. Schuster and K.K. Paliwal, Bidirectional recurrent neural networks, IEEE Trans. Signal Process. 45 (1997), no. 11, 2673–2681.
[37] H. A. Vamerzani and M. Khademi, Increase business intelligence based on opinions mining in the Persian reviews, Int. Acad. J. Sci. Engin. 2 (2015) no. 2, 164–174.
[38] Y. Wang, A. Sun, J. Han, Y. Liu, and X. Zhu, Sentiment analysis by capsules, Proc. World Wide Web Conf. Steering Committee, 2018, pp. 1165–1174.
[39] L. Xiao, H. Zhang, W. Chen, Y. Wang, and Y. Jin, Mcapsnet: Capsule network for text with multi-task learning, Proc. 2018 Conf. Empir. Meth. Natural Language Process., 2018, pp. 4565–4574.
[40] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy, Hierarchical attention networks for document classification, Proc. Conf. North Amer., Chapter of the Association for Computational Linguistics: Human Language Technologies, 2016, pp. 1480–1489.
[41] Z. Yuan, S. Wu, F. Wu, J. Liu, and Y. Huang, Domain attention model for multi-domain sentiment classification, Knowledge-Based Syst. 155 (2018), 1–10.
[42] Y. Zhang and B. Wallace, A sensitivity analysis of (and practitioners’ guide to) convolutional neural networks for sentence classification, arXiv preprint arXiv:1510.03820, 2015.
[43] X. Zhang, J. Zhao, and Y. LeCun, Character-level convolutional networks for text classification, Adv. Neural Inf. Process. Syst. 28 (2015), 649-657.