[1] M. Ahsanullah, Record Statistics, Nova Science Publishers Inc, Commack, New York, 1995.
[2] B.C. Arnold, N. Balakrishnan, and H.N. Nagaraja, Records, New York (NY), Wiley, 1998.
[3] R.L. Berger and G. Casella, Statistical Inference, 2nd ed. New York, Brooks/Cole Pub Co., 1990.
[4] J.M. Bernardo and A.F.M. Smith, Bayesian Theory, Wiley, New York, 1994.
[5] M. Eskandarzadeh, S. Tahmasebi, and M. Afshari, Information measures for record ranked set samples, Ciencia Natura 38 (2016), 554–563.
[6] E. Golzade Gervi, P. Nasiri, and M. Salehi, An overview of Bayesian prediction of future record statistics using upper record ranked set sampling scheme, Int. J. Nonlinear Anal. Appl. 12 (2021), 493-507.
[7] E. Golzade Gervi, P. Nasiri, and M. Salehi, Comparison of empirical Bayesian estimations and predictions Based on record ranked set sampling scheme with inverse sampling scheme, J. Statist. Sci. 15 (2021), 193–218.
[8] A.S. Hassan, M. Abd-Allah, and H.F. Nagy, Bayesian analysis of record statistics based on generalized inverted exponential model, Int. J. Adv. Sci. Eng. Inf. Technol. 8 (2018), 323–335.
[9] E.L. Lehmann and G. Casella, Theory of Point Estimation, 2nd ed. New York, Springer-Verlag, 1998.
[10] J.S. Maritz and T. Lwin, Empirical Bayes Method, second ed., Chapman and Hall, London, 1989.
[11] H.A. Muttlak, W.A. Abu-Dayyeh, and M.F. Saleh, Estimating Pr(Y < X) using ranked set sampling in case of the exponential distribution, Commun. Stat. Theory Meth. 39 (2010), 1855–1868.
[12] V. Nevzorov, Records, Mathematical Theory, Translation of Mathematical Monographs No. 194, American Mathematical Society, Providence, RI, 2011.
[13] J. Paul and PY. Thomas, Concomitant record ranked set sampling, Commun. Statist.-Theory Meth. 46 (2017), 5918–5940.
[14] V. Pareto, Cours dEconomie Politique. Paris: Rouge et Cie, 1897.
[15] F. Proschan, Theoretical explanation of observed decreasing failure rate, Technometrics 5 (1963), 375–383.
[16] M.Z. Raqab, J. Ahmadi, and M. Doostparast, Statistical inference based on record data from Pareto model, Statistics 41 (2007), 105–118.
[17] M.Z. Raqab, A. Asgharzadeh, and R. Valiollahi, Prediction for Pareto distribution based on progressively Type-II censored samples, Comput. Statist. Data Anal. 54 (2010), 1732–1743.
[18] A. Sadeghpour, M. Salehi, and A. Nezakati, Estimations of the stress-strength reliability using lower record ranked set sampling scheme under the generalized exponential distribution, Statist. Comput. Simul. 90 (2020), 51–74.
[19] A. Safaryian, M. Arashi, and R. Arabi, Improved estimators for stress-strength reliability using record ranked set sampling scheme, Commun. Statist. Simul. Comput. 48 (2019), 2708–2726.
[20] M. Salehi and J. Ahmadi, Estimation of stress-strength reliability using record ranked set sampling scheme from the exponential distribution, Filomat 29 (2015), 1149–1162.
[21] M. Salehi, J. Ahmadi, and S. Dey, Comparison of two sampling schemes for generating record-breaking data from the proportional hazard rate models, Commun. Statist. Theory Meth. 45 (2016), 3721–3733.
[22] M. Salehi and J. Ahmadi, Record ranked set sampling scheme, Metron 72 (2014), 351–365.
[23] A. Soliman, Estimations for Preto model using general progressive censored data and asymmetric loss, Commun. Statist. Theory Meth. 37 (2008), 1353–1370.
[24] H.R. Varian, A Bayesian approach to real estate assessment, Stud. Bayesian Economet. Statist. Honor Leonard J. 13 (1975), 195–208.
[25] A. Zellner, Bayesian estimation and prediction using asymmetric loss function, J. Am. Stat. Assoc. 81 (1986), 446–451.