[1] H. Ben Ali, K. Mokni, and M. Ch-Chaoui, Controlling chaos in a discretized prey-predator system, Int. J. Nonlinear Anal. Appl. 14 (2023), no. 1, 1385–1398.
[2] M. Ch-Chaoui and K. Mokni, A discrete evolutionary Beverton-Holt population model, Int. J. Dynam. Control 11 (2023), 1060–1075.
[3] S. Elaydi, Discrete Chaos, Applications in Science and Engineering, Second Edition, Chapman and Hall / CRC London, 2008.
[4] S. Elaydi, Global dynamics of discrete dynamical systems and difference equations, Elaydi S et al. (eds) Differ. Equ. Discrete Dyn. Syst. Appl., ICDEA 2017, Springer Proc. Math. Statist., 2019.
[5] E. Elaydi, Y. Kang, and R. Luıs, The effects of evolution on the stability of competing species, J. Bio. Dyn. 16 (2022), no. 1, 816.
[6] Q. Din, Complexity and chaos control in a discrete-time prey–predator model, Commun. Nonlin. Sci. Numer. Simulat. 49 (2017), 113—134.
[7] Z. He and X. Lai, Bifurcation and chaotic behavior of a discrete-time predator–prey system, Nonlinear Anal.: Real World Appl. 12 (2011), 403-417.
[8] S.B. Hsu and T.W, Huang, Global stability for a class of predator-prey systems, SIAM J. Appl. Math. 55 (1995), no. 13, 763–783.
[9] Y.A. Kuznetsov, Elements of Applied Bifurcation Theory, 3rd edn, Springer, New York, 2004.
[10] R. May, Simple mathematical models with very complicated dynamics, Nature 261 (1976), 459—467.
[11] K. Mokni and M. Ch-Chaoui, Asymptotic stability, bifurcation analysis and chaos control in a discrete evolutionary Ricker population model with immigration, Elaydi S, et al. (eds) Adv. Discrete Dyn. Syst. Differ. Equ. Appl., ICDEA 2021, Springer Proc. Mathe. Statist., 2023.
[12] K. Mokni and M. Ch-Chaoui, Complex dynamics and Bifurcation analysis for a discrete evolutionary Beverton-Holt population model with Allee effect, Int. J. Biomath. 16 (2023), no. 7, 2250127.
[13] K. Mokni, S. Elaydi, M. Ch-Chaoui, and A. Eladdadi, Discrete evolutionary population models: A new approach, J. Biol. Dyn. 14 (2020), no. 1, 454–478.
[14] M.D. Murry, Mathematical Biology, Springer, New York, 1989.
[15] P.K. Santra and G.S. Mahapatra, Dynamical study of discrete-time prey-predator model with prey refugee under imprecise biological parameters, J. Bio. Syst. 28 (2020), no. 3, 681–699.
[16] P.K. Santra, G.S. Mahapatra, and G.R. Phaijoo, Bifurcation analysis and chaos control of discrete prey–predator model incorporating novel prey–refuge concept, Comput. Math. Meth. 3 (2022), no. 6.
[17] H. Singh, J. Dhar, and H.S. Bhatti, Discrete-time bifurcation behavior of a prey-predator system with generalized predator, Adv. Differ. Equ. 2015 (2015), no. 1, 206.