[1] M. Annunziato and A. Borzi, Optimal control of probability density functions of stochastic processes, Math. Model. Anal. 15 (2010), no. 4, 393–407.
[2] M. Annunziato and A. Borzi, A Fokker-Planck control framework for multidimensional stochastic processes, J. Comput. Appl. Math. 237 (2013), no. 1, 487–507.
[3] S. Bazm, Bernoulli polynomials for the numerical solution of some classes of linear and nonlinear integral equations, J. Comput. Appl. Math. 275 (2015), 44–60.
[4] R. Bellman, Dynamic programming and stochastic control processes, Inf. Control 1 (1958), no. 3, 228–239.
[5] A.H. Bhrawy, E. Tohidi, and F. Soleymani, A new Bernoulli matrix method for solving high-order linear and nonlinear Fredholm integro-differential equations with piecewise intervals, Appl. Math. Comput. 219 (2012), no. 2, 482–497.
[6] J.M. Bismut, Linear quadratic optimal stochastic control with random coefficients, SIAM J. Control Optim. 14 (1976), no. 3, 419–444.
[7] J.M. Bismut, Controle des Systemes Lineaires Quadratiques: Applications de l’integrale Stochastique, Springer-Verlag, Berlin, 1978.
[8] Z. Chen, X. Feng, S. Liuand, and W. Zhang, Bang-bang control for a class of optimal stochastic control problems with symmetric cost functional, Automatica 149 (2023), 110849.
[9] S. Chen and J. Yong, Stochastic linear quadratic optimal control problems with random coefficients, Chinese Ann. Math. 21 (2000), no. 3, 323–338.
[10] Y. Chen and Y. Zhu, Optimistic value model of indefinite LQ optimal control for discrete-time uncertain systems, Asian J. Control 20 (2018), no. 1, 495–510.
[11] F.A. Costabile and F. Dell’Accio, Expansion over a rectangle of real functions in Bernoulli polynomials and applications, BIT Numer. Math. 43 (2001), 451–464.
[12] L. Deng and Y. Zhu, An uncertain optimal control model with n jumps and application, Comput. Sci. Inf. Syst. 9 (2012), no. 4, 1453–1468.
[13] J.C. Doyle and B.A. Francis and A.R. Tannenbaum, Feedback Control Theory, Courier Corporation, 2013.
[14] N. Du, J. Shi, and W. Liu, An effective gradient projection method for stochastic optimal control, Int. J. Numer. Anal. Model. 10 (2013), no. 4, 757–774.
[15] R. Elliott, X. Li, and Y.H. Ni, Discrete time mean-field stochastic linear-quadratic optimal control problems, Automatica 49 (2013), no. 11, 3222–3233.
[16] J. Engwerda, LQ Dynamic Optimization and Differential Games, John Wiley & Sons, 2005.
[17] N. Ghaderi and M.H. Farahi, The numerical solution of nonlinear optimal control problems by using operational matrix of Bernstein polynomials, Math. Anal. Convex Optim. 2 (2021), no. 1, 11–27.
[18] R. Herzallah, Generalised probabilistic control design for uncertain stochastic control systems, Asian J. Control 20 (2018), no. 6, 2065–2074.
[19] S. Ji, S. Peng, Y. Peng, and X. Zhang, Solving stochastic optimal control problem via stochastic maximum principle with deep learning method, J. Sci. Comput. 93 (2022), no. 1, 30.
[20] B. Kafash and A. Delavarkhalafi, Restarted state parameterization method for optimal control problems, J. Math. Comput. Sci. 14 (2015), 151–161.
[21] M. Kohlmann and S. Tang, New developments in backward stochastic Riccati equations and their applications, Math. Finance: Workshop Math. Finance Res. Project, Konstanz, Germany, October 5–7, 2000. Birkhauser Basel, 2001, pp. 194–214.
[22] M. Kohlmann and S. Tang, Multidimensional backward stochastic Riccati equations and applications, SIAMJ. Control Optim. 41 (2003), no. 6, 1696–1721.
[23] D.H. Lehmer, A new approach to Bernoulli polynomials, Amer. Math. Month. 95 (1988), no. 10, 905–911.
[24] Q. Lu and T. Wang, Optimal feedback controls of stochastic linear quadratic control problems in infinite dimensions with random coefficients, J. Math. Pures Appl. 173 (2023), 195–242.
[25] Q. Lu, T. Wang, and X. Zhang, Characterization of optimal feedback for stochastic linear quadratic control problems, Prob. Uncert. Quant. Risk 2 (2017), 1–20.
[26] K. Maleknejad, M. Khodabin, and F. Hosseini Shekarabi, Modified block pulse functions for numerical solution of stochastic Volterra integral equations, J. Appl. Math. 2014 (2014).
[27] K. Maleknejad, M. Khodabin, and M. Rostami, Numerical solution of stochastic Volterra integral equations by a stochastic operational matrix based on block pulse functions, Math. Comput. Modell. 55 (2012), no. 3-4, 791–800.
[28] F. Mirzaee and E. Hadadiyan, Numerical solution of Volterra–Fredholm integral equations via modification of hat functions, Appl. Math. Comput. 280 (2016), 110–123.
[29] F. Mirzaee, N. Samadyar, and S.F. Hosseini, A new scheme for solving nonlinear Stratonovich Volterra integral equations via Bernoullis approximation, Appl. Anal. 96 (2017), no. 13, 2163–2179.
[30] E.H. Ouda, The efficient generalized Laguerre parameterization for quadratic optimal control problem, J. College Educ. Al-Mustansyriah Univer. 3 (2014), no. 1812-0380, 263–276.
[31] S. Peng and Z. Wu, Fully coupled forward-backwards stochastic differential equations and applications to optimal control, SIAM J. Control Optim. 37 (1999), no. 3, 825–843.
[32] M. Saffarzadeh, A. Delavarkhalafi, and Z. Nikoueinezhad, Numerical method for solving optimal control problem of stochastic Volterra integral equations using block pulse functions, J. Math. Comput. Sci. 11 (2014), 22–36.
[33] R. Schlosser, A stochastic dynamic pricing and advertising model under risk aversion, J. Rev. Pric. Manag. 14 (2015), 451–468.
[34] Y. Shang, Optimal control strategies for virus spreading in inhomogeneous epidemic dynamics, Canad. Math. Bull. 56 (2013), no. 3, 621–629.
[35] S. Tang, Dynamic programming for general linear quadratic optimal stochastic control with random coefficients, SIAMJ. Control Optim. 53 (2015), no. 2, 1082–1106.
[36] K.L. Teo, D.W. Reid, and I.E. Boyd, Stochastic optimal control theory and its computational methods, Int. J. Syst. Sci. 11 (1980), no. 1, 77–95.
[37] E. Tohidi, A.H. Bhrawy, and K. Erfani, A collocation method based on Bernoulli operational matrix for numerical solution of generalized pantograph equation, Appl. Math. Model. 37 (2013), no. 6, 4283—4294.
[38] N. Touzi and A. Tourin, Optimal Stochastic Control, Stochastic Target Problems, and Backward SDE, Springer Science and Business Media, 2012.
[39] G. Wang, Z. Wu, and J. Xiong, An Introduction to Optimal Control of FBSDE with Incomplete Information, Springer, 2018.
[40] W.M. Wonham, On a matrix Riccati equation of stochastic control, SIAM J. Control Optim. 6 (1968), no. 4, 681–697.
[41] J.L. Wu and T.T. Lee, Robust H∞ control problem for general nonlinear systems with uncertainty, Asian J. Control 5 (2003), no. 2, 168–175.
[42] S. Xing, Y. Liu, and D.Y. Liu, An improved iterative algorithm for solving optimal tracking control problems of stochastic systems, Math. Comput. Simul. 213 (2023), 515–526.
[43] R. Zeghdane, Numerical solution of stochastic integral equations by using Bernoulli operational matrix, Math. Comput. Simul. 165 (2019), 238–254.
[44] H. Zhang and X. Zhang, Stochastic linear quadratic optimal control problems with expectation-type linear equality constraints on the terminal states, Syst. Control Lett. 177 (2023), 105551.
[45] J. Zheng and L. Qiu, On the existence of a mean-square stabilizing solution to a modified algebraic Riccati equation, IFAC Proc. 47 (2014), no. 3, 6988–6993.
[46] K. Zhou and C.J. Doyle, Essentials of Robust Control, Prentice Hall Upper Saddle River, NJ., 1998.