[1] J.M. Alemany, D.C.A. Moitre, H. Pinto, and F. Magnago, Short-term scheduling of combined cycle units using mixed integer linear programming solution, Energy Power Engin. 5 (2013), 161–170.
[2] M.I. Alizadeh, M.P. Moghaddam, and N. Amjady, Multistage multiresolution robust unit commitment with nondeterministic flexible ramp considering load and wind variabilities, IEEE Trans. Sustain. Energy 9 (2017), no. 2, 872–883.
[3] M.I. Alizadeh, M. Parsa Moghaddam, and N. Amjady, Flexibility contribution of heat ventilation and air conditioning loads in a multi-stage robust unit commitment with non-deterministic variability-oriented ramp reserves, IET Gen. Transmis. Distrib. 12 (2018), no. 12, 3037–3045.
[4] D. Bertsimas, E. Litvinov, X.A. Sun, J. Zhao, and T. Zheng, Adaptive robust optimization for the security constrained unit commitment problem, IEEE Trans. Power Syst. 28 (2012), no. 1, 52–63.
[5] X. Chen, J. Layke, L.V.W. McGrory, J. Corfee-Morlot, and K. Kennedy, Our solar future—Roadmap to mobilize USD 1 trillion by 2030, WRI: World Resources Institute, U.S.A. 2022.
[6] R. Chen, J. Wang, A. Botterud, and H. Sun, Wind power providing flexible ramp product, IEEE Trans. Power Syst. 32 (2016), no. 3, 2049–2061.
[7] Cobos, N.G., J.M. Arroyo, N. Alguacil and A. Street, Robust energy and reserve scheduling under wind uncertainty considering fast-acting generators, IEEE Trans. Sustain. Energy 10 (2018), no. 4, 2142–2151.
[8] N.G. Cobos, J.M. Arroyo, N. Alguacil, and J. Wang, Robust energy and reserve scheduling considering bulk energy storage units and wind uncertainty, IEEE Trans. Power Syst. 33 (2018), no. 5, 5206–5216.
[9] J.J. Conti, P.D. Holtberg, J.A. Beamon, A.M. Schaal, J.C. Ayoub and J.T. Turnure, Annual energy outlook 2014, US Energy Info. Admin. 2 (2014).
[10] C. Dai, Y. Chen, F. Wang, J. Wan and L. Wu, A configuration-component-based hybrid model for combined-cycle units in MISO day-ahead market, IEEE Trans. Power Syst. 34 (2018), no. 2, 883–896.
[11] J. Dong, S. Han, X. Shao, L. Tang, R. Chen, L. Wu, C. Zheng, Z. Li and H. Li, Day-ahead wind-thermal unit commitment considering historical virtual wind power data, Energy 235 (2021), p. 121324.
[12] X. Fang, L. Bai, F. Li and B.-M. Hodge, Hybrid component and configuration model for combined-cycle units in unit commitment problem, J. Mod. Power Syst. Clean Energy 6 (2018), no. 6, 1332–1337.
[13] G. Ferrari-Trecate, E. Gallestey, P. Letizia, M. Spedicato, M. Morari, and M. Antoine, Modeling and control of co-generation power plants: A hybrid system approach, IEEE Trans. Control Syst. Technol. 12 (2004), no. 5, 694–705.
[14] D. Gielen, R. Gorini, R. Leme, G. Prakash, N.Wagner, L. Janeiro, S. Collins, M. Kadir, E. Asmelash, R. Ferroukhi, and U. Lehr, World energy transitions outlook: 1.5◦ c pathway, International Renewable Energy Agency (IRENA), 2021.
[15] E. Heydarian-Forushani, M.E. Hamedani Golshan, M. Shafie-khah, and P. Siano, Optimal operation of emerging flexible resources considering sub-hourly flexible ramp product, IEEE Trans. Sustain. Energy 9 (2017), no. 2, 916–929.
[16] B. Hu, L. Wu and M. Marwali, On the robust solution to SCUC with load and wind uncertainty correlations, IEEE Trans. Power Syst. 29 (2014), no. 6, 2952–2964.
[17] IRENA. Roadmap 2030 Doubling the global share of renewable energy: a roadmap to 2030, International Renewable Energy Agency, Working paper.
[18] F. Jabari, H. Arasteh, A. Sheikhi-Fini, H. Ghaebi, M.B. Bannae-Sharifian, B. Mohammadi-Ivatloo, and M. Mohammadpourfard, A biogas-steam combined cycle for sustainable development of industrial-scale water-power hybrid microgrids: design and optimal scheduling, Biof. Bioprod. Bioref. 16 (2022), no. 1, 172–192.
[19] K.-B. Kwon and D. Kim, Enhanced method for considering energy storage systems as ancillary service resources in stochastic unit commitment, Energy 213 (2020),118675.
[20] E. Lannoye, D. Flynn, and M. O’Malley, Assessment of power system flexibility: A high-level approach, IEEE Power Energy Soc. Gen. Meet., IEEE, 2012, pp. 1–8.
[21] J. Li, S. Zhou, Y. Xu, M. Zhu and L. Ye, A multi-band uncertainty set robust method for unit commitment with wind power generation, Int. J. Electr. Power Energy Syst. 131 (2021), 107125.
[22] T. Limbu, T. Saha, and J. McDonald, Value-based allocation and settlement of reserves in electricity markets, IET Gen. Transmis. Distrib. 5 (2011), no. 4, 489–495.
[23] F. Lu, Z. Yu, Y. Zou, and X. Yang, Energy flexibility assessment of a zero-energy office building with building thermal mass in short-term demand-side management, J. Build. Eng. 50 (2022), 104214.
[24] B. Lu and M. Shahidehpour, Short-term scheduling of combined cycle units, IEEE Trans. Power Syst. 19 (2004), no. 3, 1616–1625.
[25] M.S. Misaghian, M. Saffari, M. Kia, A. Heidari, M. Shafie-khah, and J.P.S. Catalao, Tri-level optimization of industrial microgrids considering renewable energy sources, combined heat and power units, thermal and electrical storage systems, Energy 161 (2018), 396–411.
[26] F. Moller Andersen, S.G. Jensen, H.V. Larsen, P. Meibom, H. Ravn, K. Skytte, and M. Togeby, Analyses of demand response in Denmark, Risoe National Lab., 2006, No. RISO-R–1565 (EN).
[27] N. Navid and G. Rosenwald, Market solutions for managing ramp flexibility with high penetration of renewable resource, IEEE Trans. Sustain. Energy 3 (2012), no. 4, 784–790.
[28] N. Navid, G. Rosenwald and D. Chatterjee, Ramp capability for load following in the MISO markets, Midwest Indep. Syst. Oper. 20 (2011).
[29] B. Nitve and R. Naik, Steady state analysis of IEEE-6 bus system using PSAT power toolbox, Int. J. Eng. Sci. Innov. Technol. 3 (2014).
[30] N. None, Annual energy outlook 2016 with projections to 2040, USDOE Energy Information Administration (EI), Washington, DC (United States), Office of Energy Analysis, No. DOE/EIA-0383, 2016.
[31] F. Pourahmadi, S.H. Hosseini, P. Dehghanian, E. Shittu and M. Fotuhi-Firuzabad, Uncertainty cost of stochastic producers: Metrics and impacts on power grid flexibility, IEEE Trans. Engin. Manag. 69 (2020), no. 3, 708–719.
[32] I.E.A. Renewables, Analysis and Forecast to 2026, International Energy Agency, Paris, France, 2021.
[33] S.P. Roukerd, A. Abdollahi, and M. Rashidinejad, Uncertainty-based unit commitment and construction in the presence of fast ramp units and energy storages as flexible resources considering enigmatic demand elasticity, J. Energy Storage 29 (2020), 101290.
[34] A.A. Salimi, A. Karimi, and Y. Noorizadeh, Simultaneous operation of wind and pumped storage hydropower plants in a linearized security-constrained unit commitment model for high wind energy penetration, J. Energy Storage 22 (2019), 318–330.
[35] S. Saranya and B. Saravanan, Effect of emission in SMES based unit commitment using modified Henry gas solubility optimization, J. Energy Storage 29 (2020), 101380.
[36] M.M. Servan, P.A. Aguirre and M.G. Marcovecchio, Simultaneous optimal short term SCUC solution and power system redesign with real gap decomposition technique, Comput. Chem. Eng. 150 (2021), 107338.
[37] S.S. Soman, H. Zareipour, O. Malik, and P. Mandal, A review of wind power and wind speed forecasting methods with different time horizons, North Amer. Power Symp., IEEE, 2010, pp. 1–8.
[38] E. Taibi, T. Nikolakakis, L. Gutierrez, C. Fernandez, J. Kiviluoma, S. Rissanen, and T.J. Lindroos, Power system flexibility for the energy transition: Part 1, overview for policymakers, Abu Dhabi, 2018.
[39] N. Troy, D. Flynn and M. O'Malley, Multi-mode operation of combined-cycle gas turbines with increasing wind penetration, IEEE Trans. Power Syst. 27 (2011), no. 1, 484–492.
[40] H. Wu, M. Shahidehpour, A. Alabdulwahab, and A. Abusorrah, Thermal generation flexibility with ramping costs and hourly demand response in stochastic security-constrained scheduling of variable energy sources, IEEE Trans. Power Syst. 30 (2014), no. 6, 2955–2964.
[41] H. Wu, M. Shahidehpour, Z. Li and W. Tian, Chance-constrained day-ahead scheduling in stochastic power system operation, IEEE Trans. Power Syst. 29 (2014), no. 4, 1583–1591.
[42] H.B. Xiong, Y.H. Shi, Z. Chen, C. Guo and Y. Ding, Multi-stage robust dynamic unit commitment based on pre-extended-fast robust dual dynamic programming, IEEE Trans. Power Syst. 38 (2022), no. 3, 2411–2422.
[43] H. Ye, Surrogate affine approximation based co-optimization of transactive flexibility, uncertainty, and energy, IEEE Trans. Power Syst. 33 (2018), no. 4, 4084–4096.
[44] J. Zhao, T. Zheng and E. Litvinov, Variable resource dispatch through do-not-exceed limit, IEEE Trans. Power Syst. 30 (2014), no. 2, 820–828.