[1] S. Abdulmajid and A.S. Hassan, Analysis of time delayed Rabies model in human and dog populations with controls, Afrika Mat. 32 (2021), 1067–1085.
[2] S. Almeria, F.H.A. Murata, C.K. Cerqueira-Cezar, O.C.H. Kwok, A. Shipley, and J.P. Dubey, Epidemiological and public health significance of Toxoplasma gondii infection in wild rabbits and hares: 2010-2020, Microorganisms 9 (2021), 597.
[3] C. Alvarado-Esquivel, S. Estrada-Martınez, A. Ramos-Nevarez, A.R. Perez- Alamos, I. Beristain-Garcia, A.O. Alvarado-Felix, S.M. Cerrillo-Soto, G.A. Alvarado-Felix, C.A. Guido-Arreola, L. Saenz-Soto, and A. Sifuentes-Alvarez, Is Toxoplasma gondii Infection Associated with Sexual Promiscuity? A Cross-Sectional Study, Pathogens 10 (2021), no. 11, 1393.
[4] D.F. Aranda, R.J. Villanueva, A.J. Arenas, and G.C. Gonzalez Parra, Mathematical modeling of toxoplasmosis disease in varying size populations, Comp. Math. Appl. 56 (2008), 690.
[5] A.J. Arenas, G. Gonzalez-Parra, and R.J. Villanueva Mico, Modeling toxoplasmosis spread in cat populations under vaccination, Theor. Popul. Biol. 77 (2010), 227–239.
[6] A.A. Ayoade and M.O. Ibrahim, Analysis of transmission dynamics and mitigation success of COVID-19 in Nigeria: An insight from a mathematical model, Aligarh Bull. Math. 41 (2022), 1–26.
[7] A.A. Ayoade, S. Agunbiade, and T. Oyedepo, Backward bifurcation in epidemic models of Toxoplasma gondii: A qualitative analysis, J. Nepal Math. Soc. 5 (2022), no. 1, 1–9.
[8] A.A. Ayoade and M.O. Ibrahim, Modeling the dynamics and control of rabies in dog population within and around Lagos, Nigeria, Eur. Phys. J. Plus 138 (2023), 397.
[10] A.A. Ayoade, T. Oyedepo, and S. Agunbiade, Mathematical modelling of Toxoplasma gondii between the environment and cat population under vaccination and sanitation, J. Fractional Calc. Appl. 14 (2023), 75–87.
[11] M.T. Balcha, B.I. Aga, D.D. Disasa, and G. Berhanu, Public health and economic significance of toxoplasmosis, Amer.-Eur. J. Sci. Res. 15 (2020), 112–121.
[12] D. Bejarano, E. Ibarguen-Mondragon, and E.A. Gomez-Hernadez, A stability test for nonlinear systems of ordinary differential equations based on the Gershgorin circles, Contemp. Engin. Sci.11 (2018), 4541–4548.
[13] G. Birkhorff and G.C. Rota, Ordinary Differential Equations, Needham Heights, Ginn, Boston, 1982.
[14] R. Blaizot, C. Nabet, L. Laghoe, B. Faivre, S. Escotte-Binet, F. Djossou, E. Mosnier, F. Hena, D. Blanchet, A. Mercier, M-L. Darde, I. Villena, and M. Demar, Outbreak of Amazonian toxoplasmosis: a one health investigation in a remote Amerindian community, Front. Cell. Infect. Microbiol. 10 (2020), 401.
[15] F. Brauer, P. van den Driessche, J.Wu, and L.J.S. Allen, Mathematical Epidemiology, Springer, Berlin Heidelberg, 2008.
[16] C. Castillo-Chavez and B. Song, Dynamical models of tuberculosis and their applications, Math. Biosci. Eng. 1 (2004), no. 2, 361–404.
[17] H. Deng, R. Cummins, G. Schares, C. Trevisan, H. Enemark, H. Waap, J. Srbljanovic, O. Djurkovic-Djakovic, S.M. Pires, J.W. van der Giessen, and M. Opsteegh. Mathematical modelling of Toxoplasma gondii transmission: A systematic review, Food Waterborne Parasitol. 22 (2021), e00102.
[18] O. Diekmann, J.A.J. Heesterbeek, and J.A.J. Metz, On the definition and the computation of the basic reproduction ratio R◦ in models for infectious diseases in heterogeneous populations, J. Math. Bio. 28 (1990), 365–373.
[19] O. Diekmann, J.A.J. Heesterbeek, and M.J. Roberts, The construction of next generation matrices for compartmental epidemic models, J. Royal Soc. Interface 47 (2010), 873–885.
[20] J.P. Dubey, Advances in the life cycle of Toxoplasma gondii, Int. J. Parasitol. 28 (1988), 1019–1024.
[21] J. Dubey and C. Beattie, Toxoplasmosis of Animals and Man, CRC Press: Boca Raton, FL, USA, 1988.
[22] D. Dunn, M. Wallon, F. Peyron, E. Petersen, C. Peckham, and R. Gilbert, Mother-to-child transmission of toxoplasmosis: risk estimates for clinical counselling, Lancet 353 (1999), 1829–1833.
[23] G. Fan, J. Liu, P. van den Driessche, J. Wu, and H. Zhu, The impact of maturation delay of mosquitoes on the transmission of West Nile virus, Math. Biosci. 228 (2010), 119–126.
[24] J.D. Ferreira, L.M. Echeverry, and C.A. Pena Rincon, Stability and bifurcation in epidemic models describing the transmission of toxoplasmosis in human and cat populations, Math. Meth. Appl. Sci. 40 (2017), 55–75.
[25] J. Flegr, K. Klapilova, and S. Kankova, Toxoplasmosis can be a sexually transmitted infection with serious clinical consequences. Not all routes of infection are created equal, Med. Hypoth. 83 (2014), 286–289.
[26] J. Frenkel, Transmission of toxoplasmosis and the role of immunity in limiting transmission and illness, J. Amer. Vet. Med Assoc. 196 (1990), 233–240.
[27] A. Freyre, L. Choromanski, J. Fishback, and I. Popiel, Immunization of cats with tissue cysts, bradyzoites, and tachyzoites of the T-263 strain of Toxoplasma gondii, J. Parasitol. 9 (1993), 716–719.
[28] A.A. Gebremeskel, Global stability of malaria transmission dynamics model with logistic growth, Discrete Dyn. Nat. Soc. 2018 (2018).
[29] D. Gomez, A more direct proof of Gerschgorin’s theorem Mat.: Ense´nanza Univ. 14 (2006), no. 2, 119-122.
[30] G.C. Gonzalez-Parra, A.J. Arenas, D.F. Aranda, R.J. Villanueva, and L. Jodar, Dynamics of a model of Toxoplasmosis disease in human and cat populations, Comput. Math. Appl. 57 (2009), 1692–1700.
[31] G. Gonzalez-Parra, S. Sultana, and A.J. Arenas, Mathematical modeling of toxoplasmosis considering a time delay in the infectivity of oocysts, Mathematics 10 (2022), 354.
[32] M. Hari and Y. Zulfahmi, Bifurcation analysis of toxoplasmosis epidemic control on increased controlled rate of suppressing the rate of infected births, Int. J. Appl. Math. Comput. Sci. 6 (2020), 1–5.
[33] D. Hill and J. Dubey, Toxoplasma gondii: transmission, diagnosis and prevention, Clin. Microbiol. Infect. 8 (2002), 634–640.
[34] M.N. Isaac, Backward bifurcation and reinfection in mathematical models of tuberculosis, PhD Thesis, RMIT University, Australia, 2018.
[35] S. Kankova, J. Hlavacova, and J. Flegr, Oral sex: A new, and possibly the most dangerous, route of toxoplasmosis transmission, Med. Hypotheses 141 (2020), 109725.
[36] O.A.S. Karamzadeh, One-line root of the AM-GM inequality, Math Intell. 33 (2011), no. 3.
[37] E. Kelting and E.B. Brittany, Toxoplasma gondii: A mathematical model of its transfer between cats and the environment, SIAM Undergraduate Res. Online 11 (2018).
[38] J.P. La Salle, The Stability of Dynamical Systems, Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, Pa, 1976.
[39] M. Langlais, M. Lelu, C. Avenet, and E. Gilot-Fromont, A simplified model system for Toxoplasma gondii spread within a heterogeneous environment, Nonlinear Dyn. 68 (2012), 381–340.
[40] M. Lappin, Feline toxoplasmosis, Practice 21 (1999), 578–589.
[41] M. Lelu, M. Langlais, ML. Poulle, and E. Gilot-Fromont, Transmission dynamics of Toxoplasma gondii along an urban–rural gradient, Theor. Popul. Biol. 78 (2010), 139–147.
[42] E.L. Lilly and C.D. Wortha, High prevalence of Toxoplasma gondii oocyst shedding in stray and pet cats (Felis catus) in Virginia, United States, Parasites Vectors 6 (2013), 266.
[43] L.L. Manuel, G.G. Santos-Gomes, and E.V. Noormahomed, Human toxoplasmosis in Mozambique: gaps in knowledge and research opportunities, Parasit. Vectors 13 (2020), 571.
[44] A.A.B. Marinovic, M. Opsteegh, H. Deng, A.W. Suijkerbuijk, P.F. van Gils, and J. Van Der Giessen, Prospects of toxoplasmosis control by cat vaccination, Epidemics 30 (2020), 100380.
[45] N. Mateus-Pinilla, B. Hannon, and R.A. Weigel, Computer simulation of the prevention of the transmission of Toxoplasma gondii on swine farms using a feline T. gondii vaccine, Prev. Vet. Med. 55 (2002), 17–36.
[46] C. Pena and K.G. Hermes Martinez, Hybrid model of the spread of toxoplasmosis between two towns of Colombia, Tecciencia 18 (2015), 1–6.
[47] H. Rafati-Sajedi, B. Majidi-Shad, R. Jafari-Shakib, Z. Atrkar-Roshan, M.R. Mahmoudi, and S.M. Rezvani, Serological evaluation of toxoplasmosis and related risk factors among HIV+/AIDS patients in northern Iran, Acta Parasitol 66 (2021), 1417–1423.
[48] G. Ramakrishnan, S. Maier, R. A.Walker, H. Rehrauer, D.E. Joekel, R.R. Winiger, W.U. Basso, M.E. Grigg, A.B. Hehl, P. Deplazes, and N.C. Smith, An experimental genetically attenuated live vaccine to prevent transmission of Toxoplasma gondii by cats, Sci. Rep. 9 (2019), no. 1, 1479–1488.
[49] A.A. Seadawy and W. Jun, New mathematical model of vertical transmission and cure of vector-borne diseases and its numerical simulation, Adv. Differ. Equ. 66 (2018).
[50] J.A. Simon, R. Pradel, D. Aubert, R. Geers, I. Villena, and M.L. Poulle, A multi-event capture-recapture analysis of Toxoplasma gondii seroconversion dynamics in farm cats, Parasites Vectors 11 (2018), 1–13.
[51] H.J. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, No. 41, American Mathematical Soc., 1995.
[52] A.R. Spickler, Toxoplasmosis: Technical Factsheet, Iowa State University, 2017.
[53] S. Sultana, G. Gonzalez-Parra, and A.J. Arenas, Dynamics of toxoplasmosis in the cat’s population with an exposed stage and a time delay, Math. Biosci. Engin. 19 (2022), 12655–12676.
[54] D. Sykes and J. Rychtar, A game-theoretic approach to evaluating toxoplasmosis vaccination strategies, Theor. Popul. Biol. 105 (2015), 33–38.
[55] P.R. Torgerson and P. Mastroiacovo, The global burden of congenital toxoplasmosis: A systematic review, Bull. World Health Organ. 91 (2013), 501–508.
[56] M. Turner, S. Lenhart, B. Rosenthal, and X. Zhao, Modeling effective transmission pathways and control of the world’s most successful parasite, Theor. Popul. Biol. 86 (2013), 50–61.
[57] J. Wang and C. Modnak, Modeling cholera dynamics with controls, Canad. Appl. Math. Quart. 19 (2011), 255–273.
[58] Z. Zafar, N. Ali, and D. Baleanu, Dynamics and numerical investigations of a fractional-order model of toxoplasmosis in the population of human and cat, Chaos Soliton Fractals 151 (2021), 111261.
[59] Z.U.A. Zafar, C. Tunc, N. Ali, G. Zaman, and P. Thounthong, Dynamics of an arbitrary order model of toxoplasmosis ailment in human and cat inhabitants, J. Taibah Univ. Sci. 15 (2021), 882–896.
[60] D.L. Zulpo, A.S. Sammi, J.R. dos Santos, J.P. Sasse, T.A. Martins, A.F. Minutti, S.T. Cardim, L.D. de Barros, I.T. Navarro, and J. Garcia, Toxoplasma gondii: A study of oocyst re-shedding in domestic cats, J. Veter. Parasitol. 249 (2018), 17–33.