[1] H. Akoglu, User’s guide to correlation coefficients, Turk. J. Emergency Med. 18 (2018), no. 3, 91–93.
[2] Y. Al-Sbou, Minkowski distance as a quality of service assessment tool, Preprint.
[3] R.C. Amorim and B. Mirkin, Minkowski metric, feature weighting and anomalous cluster initializing in K-Means clustering, Pattern Recog. 45 (2012), no. 3, 1061–1075.
[4] A.V. Arkhangel’skii and L.S. Pontryagin, General Topology I: Basic Concepts and Constructions Dimension Theory, Encyclopaedia of Mathematical Sciences, 1990.
[5] C. Borrego, E. Hemandez-Orallo, P. Manzoni, and A.M. Vegni, LAPSE: A machine learning message forwarding approach based on node centrality estimation in sparse dynamic networks, Wireless Days (WD). IEEE, 2021, pp. 1–6.
[6] U. Brandes, On variants of shortest-path between centrality and their generic computation, Soc. Networks 30 (2008), no. 2, 136–145.
[7] H.B. Colakoglu, A generalization of the Minkowski distance and a new definition of the ellipse, Turk. J. Math. 44 (2020), no. 1, 319–333.
[8] M.C. Delfour, Topological derivative: A semidifferential via the Minkowski content, J. Convex Anal. 25 (2018), no. 3, 957–982.
[9] F. Errica, M. Podda, D. Bacciu, and A. Micheli, A fair comparison of graph neural networks for graph classification, arXiv preprint arXiv:1912.09893 (2019).
[10] M. Girvan and M.E. Newman, Community structure in social and biological networks, Proc. Nat. Acad. Sci. 99 (2002), no. 12, 7821-7826.
[11] L. Goodwin, D. Leech, and L. Nancy, Understanding Correlation: Factors that Affect the Size of r, J. Exper. Educ. 74 (2006), no. 3, 251–266.
[12] M. Goswami, A. Babu, and B.S Purkayastha, A comparative analysis of similarity measures to find coherent documents, Int. J. Manag. 8 (2018), no. 11, 2249-7455.
[13] S. Gultom, S. Sriadhi, M. Martiano, and J. Simarmata, Comparison analysis of K-means and K-Medoid with Ecluidience Distance Algorithm, Canberra Distance, and Chebyshev Distance for big data clustering, IOP Conf. Ser.: Mater. Sci. Engin., vol. 420, 2nd Nommensen International Conference on Technology and Engineering, 2018, pp. 19–20.
[14] M. Hanafy and R. Ming, Classification of the insureds using integrated machine learning algorithms: A comparative study, Appl. Artific. Intell. 36 (2022), no. 1, 2020489.
[15] W. Inariba, T. Akiba, and Y. Yoshida, Random-radius ball method for estimating Closeness centrality, Proc. AAAI Conf. Artific. Intell., 2017.
[16] Y. Jin, Q. Bao, and Z. Zhang, Forest distance closeness centrality in disconnected graphs, IEEE Int. Conf. Data Min. (ICDM), 2019, pp. 339–348.
[17] H. Kalhori, M.M. Alamdari, and L. Ye, Automated algorithm for impact force identification using cosine similarity searching, Measurement 122 (2018), 648-657.
[19] J.M. List, Beyond edit distances: Comparing linguistic reconstruction systems, Theor. Linguist. 45 (2019), no. 3-4, 247-258.
[20] C. Liu, F. Zhu, X. Chang, X. Liang, Z. Ge, and Yi-Dong Shen, Vision-language navigation with random environmental mixup, Proc. IEEE/CVF Int. Conf. Comput. Vision, 2021, pp. 1644–1654.
[21] H. Mark and J. WorkmanJr, Chemometrics in Spectroscopy, Second Edition, Elsevier, 2018.
[22] S.K. Maurya and X. Liu, Tsuyoshi Murata, graph neural networks for fast node ranking approximation, ACM Trans. Knowledge Discov. Data 1 (2021), 1—32.
[23] R. Pascual-Marqui, D. Lehmann, K. Kochi, T. Kinoshita, and N. Yamada, A measure of association between vectors based on similarity covariance, arXiv preprint arXiv:1301.4291 (2013).
[24] M. Pervaiz, A. Jalal, and K. Kim, Hybrid algorithm for multi people counting and tracking for smart surveillance, Int. Bhurban Conf. Appli. Sci. Technol., 2021, pp. 530–535.
[25] M. Pintor, D. Angioni, A. Sotgiu, L. Demetrio, A. Demontis, B. Biggio, and F. Roli, ImageNet-Patch: A dataset for benchmarking machine learning robustness against adversarial patches, Pattern Recog. 134 (2023), 109064.
[26] A. Raj and S. Susan, Clustering Analysis for Newsgroup Classification, Data Engineering and Intelligent Computing, Lecture Notes in Networks and Systems, 2022.
[27] A. Saxena, R. Gera, and S.R.S Iyengar, A faster method to estimate closeness centrality ranking, arXiv preprint arXiv:1706.02083 (2017).
[28] J.R. Taylor, An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, Sausalito, CA: University Science Books, 1997.
[29] K. Thirumoorthy and K. Muneeswaran, Feature selection for text classification using machine learning approaches, Nat. Acad. Sci. Lett. 45 (2022), 51—56.
[30] A. van der Grinten, E. Angriman, M. Predari, and H. Meyerhenke, New approximation algorithms for forest closeness centrality–for individual vertices and vertex groups, Proc. SIAM Int. Conf. Data Min. (SDM), Soc. Ind. Appl. Math., 2021, pp. 136–144.
[31] A. Verm and V. Ranga, Machine learning-based intrusion detection systems for IoT applications, Wireless Pers Commun. 11 (2020), 2287–2310.
[32] S. Zhang and X. Pan, A novel text classification based on Mahalanobis distance, Int. Conf. Comput. Res. Dev., 2011, pp. 156–158.
[33] K. Zhao, Y. Dai, Z. Jia, and Y. Ji, General fuzzy C-means clustering algorithm using Minkowski metric, Signal Process. 188 (2021), 108161.
[34] Q. Zhou, P. Tang, S. Liu, J. Pan, Q. Yan, and S.-C Zhan, Learning atoms for materials discovery, Proc. Nat. Acad. Sci. 115 (2018), no. 28, 6411–6417.