[1] H. Attouch, J. Bolte, P. Redont, and A. Soubeyran, Alternative proximal algorithm for weakly coupled minimum problems, application to dynamic games and PDEs, J. Convex Anal. 15 (2008), 485–506.
[2] H. Attouch, A. Cabot, F. Frankel, and J. Peypouquet, Alternative proximal algorithm for constrained variational inequalities, Application to domain decomposition for PDEs, Nonlinear Anal. 74 (2011), 7455–7473.
[3] J.B. Baillon and G. Haddad, Quelques proprites des operateurs angle-bornes et cycliquement monontones, Isr. J. Math. 26 (1977), 137–150.
[4] H.H. Bauschke and J.M. Borwein, Legendre functions and the method of random Bregman projections, J. Convex Anal. 4 (1997), 27–67.
[5] H.H. Bauschke, J.M. Borwein, and P.L. combettes, Bregman monotone optimization algorithms, SIAM J. Control Optim. 42 (2003), 596–636.
[6] D. Butnariu and E. Resmerita, Bregman distance, totally convex functions and a method for solving operator equations in Banach spaces, Abstr. Appl. Anal. 2006 (2006), 1–39.
[7] D. Butnariu and A.N. Iusem, Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization, Vol. 40, Kluwer Academic, Dordrecht, The Netherlands, 2000.
[8] F.E. Browder, Nonlinear mappings of nonexpancive and accretive-type in Banach spaces, Bull. Amer. Math. Soc. 73 (1967), 875–882.
[9] J.F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problem, Springer, New York, 2000.
[10] S.S. Chang, L. Wang, and L.J. Qin, Split equality fixed point problem for quasi-pseudo-contractive mappings with applications, Fixed Point Theory Appl. 2015 (2015), 208.
[11] Y. Censor and A. Lent, An iterative row-action method for interval convex programming, J. Optim. Theory Appl. 34 (1981), no. 3, 321–353.
[12] C.E. Chidume, P. Ndambomve, and A.U. Bello, The split equality fixed point problem for demi-constractive mappings, J. Non. Ana. Optim. 6 (2015), no. 1, 61–69.
[13] K. Deimling, Zeros of accretive operators, Manuscripta Math. 13 (1974), 365–374.
[14] H. Guo, H. He, and R. Chen, Convergence theorems for the split variational inclusion problem and fixed point problems in Hilbert spaces, Fixed Point Theory Appl. 2015 (2015), Art. ID 223.
[15] L.O. Jolaoso, F.U. Ogbuisi, and O.T. Mewomo, On split equality variational inclusion problems in Banach spaces without operator norms, Int. J. Nonlinear Anal. Appl. 12 (2021) 425–446.
[16] B. Liu, Fixed point of strong duality pseudocontractive mappings and applications, Abstr. Appl. Anal. 2012 (2012), Article ID 623625.
[17] P.E. Mainge, Strong convergence of projected subgradient method for nonsmooth and nonstrictily convex minimization, Set-Valued Anal. 16 (2008), no. 7-8, 899–912.
[18] B. Martinet, Regulation diequation variationelles par approximations successives, Rev. Francaise inf. Rech. Oper. (1970) 154–159.
[19] A. Moudafi, A relaxed alternating CQ algorithm for convex feasibility problems, Nonlinear Anal. 79 (2013), 117–121.
[20] E. Naraghirad and J.C. Yao, Bergman weak relatively nonexpansive mappings in Banach spaces, Fixed Point Appl. 141 (2013).
[21] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, Kluwer Academic Publishers, 2004.
[22] D. Pascali and S. Sburian, Nonlinear Mappings of Monotone Type, Editura Academia Bucuresti, Romania, 1978.
[23] R.P. Phelps, Convex Functions, Monotone Operators, and Differentiability, Lecture Notes in Mathematics, Vol. 1364, 2nd ed. Springer Verlag, Berlin, 1993.
[24] S. Reich and S. Sabach, Existence and approximation of fixed point of Bregman firmily nonexpansive mappings in reflexive Banach spaces, Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer, New York, 2011, pp 301–316.
[25] S. Reich and S. Sabach, Two strong convergence theorem for Bregman strongly nonexpansive operators in reflexive Banach spaces, Nonlinear Anal. TMA 73 (2010), 122–135.
[26] S. Reich and S. Sabach, A projection method for solving nonlinear problems in reflexive Banach spaces, J. Fixed Point Theory Appl. 9 (2011), 101–116.
[27] R.T. Rockafellar, On the maximal monotonicity of subdifferential mappings, Pac. J. Math. 33 (1970), 209–216.
[28] P. Senakka and P. Cholamjiak, Approximation method for solving fixed point problem of Bregman strongly nonexpansive mappings in reflexive Banach spaces, Ric. Mat. 65 (2016), 209–220.
[29] G.B. Wega and H. Zegeye, Convergence results of Forward-Backward method for a zero of the sum of maximally monotone mappings in Banach spaces, Comp. Appl. Math. 39 (2020), 1–16.
[30] G.B. Wega and H. Zegeye, Split equality methods for a solution of monotone inclusion problems in Hilbert spaces, Linear Nonlinear Anal. 5 (2020), no. 3, 495–516.
[31] H.H. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl. 298 (2004), no. 1, 279–291.
[32] Y. Su and H.K. Xu, A duality fixed point theorem and applications, Fixed Point Theory 13 (2012), no.1, 259–265.
[33] C. Zalinescu, Convex Analysis in General Vector Spaces, World Scientific, River Edge, NJ, USA, 2002.
[34] H. Zegeye and G.B. Wega, Approximation of a common f-fixed point of f-pseudo contractive mappings in Banach spaces, Rend. Circ. Mat. Palermo Ser. 2 70 (2021), no. 3, 1139–1162.
[35] H. Zegeye, Strongly convergence theorems for maximal monotone mappings in Banach spaces, J. Math. Anal. Appl. 343 (2008), 663–671.
[36] J. Zhao, Solving split equality fixed point problem of quasi-nonexpansive mappings without prior knowledge of operators norms, Optimization 64 (2015), no. 12, 2619–2630.