[1] A. Azar, Control Applications for Biomedical Engineering Systems, Elsevier Science, 2020.
[2] T. Britton, F. Ball, and P. Trapman, A mathematical model reveals the influence of population heterogeneity on herd immunity to SARS-CoV-2, Science 369 (2020), 846–849.
[3] F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Springer, 2012.
[4] K.J. Bruxvoort, L.S. Sy, L. Qian, B.K. Ackerson, Y. Luo, G.S. Lee, Y. Tian, A. Florea, H.S. Takhar, J.E. Tubert, and C.A. Talarico, Real-world effectiveness of the mRNA-1273 vaccine against COVID-19: interim results from a prospective observational cohort study, Lancet Regional Health–Americas 6 (2022).
[5] P. Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 180 (2002), 29–48.
[6] M. Frieman, A.D. Harris, R.S. Herati, F. Krammer, A. Mantovani, M. Rescigno, M.M. Sajadi, and V. Simon, SARS-CoV-2 vaccines for all but a single dose for COVID-19 survivors, eBioMedicine 68 (2021), 103401.
[7] N.M. Ferguson, D. Laydon, G. Nedjati-Gilani, N. Imai, K. Ainslie, M. Baguelin, S. Bhatia, A. Boonyasiri, Z. Cucunuba, G. Cuomo-Dannenburg, and A. Dighe, Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand, London: Imperial College COVID-19 Response Team. March 16 (2020).
[8] A.B. Gumel, E.A. Iboi, C.N. Ngonghala, and E.H. Elbasha, A primer on using mathematics to understand COVID-19 dynamics: Modeling, analysis and simulations, Infect. Disease Modell. 6 (2021), 148–168.
[9] F. Havers, H. Phm and C. Taylor et al., COVID-19-associated hospitalizations among vaccinated and unvaccinated adults ≥ 18 years – COVID-NET, JAMA Internal Med. 182 (2022), no. 10, 1071–1081.
[10] J. Haefner, Modeling Biological Systems: Principles and Applications, Springer, 2005.
[11] H.W. Hethcote, The mathematics of infectious diseases, SIAM Rev. 42 (2020), no. 4, 599-–653.
[13] B. Ivorra and A.M. Ramos, Application of the Be-CoDis mathematical model to forecast the international spread of the 2019 Wuhan coronavirus outbreak, Technical Report. (2020) 1-–13 DOI: 10.13140/RG.2.2.31460.94081.
[14] B. Ivorra and A.M. Ramos, Validation of the forecasts for the international spread of the coronavirus disease 2019 (COVID-19) done with the Be-CoDis mathematical model, Technical Report (2020) 1-–7 DOI:10.13140/RG.2.2.34877.00485.
[15] B. Ivorra, A.M. Ramos, and D. Ngom, Be-CoDiS: A mathematical model to predict the risk of human diseases spread between countries-validation and application to the 2014-2015 Ebola Virus Disease epidemic, Bull. Math. Bio. 77 (2015), no. 9, 1668-–1704.
[16] Sh. Jiang, Q. Li, C. Li, Sh. Liu, X. He, T. Wang, H. Li, C. Corpe, X. Zhang, J. Xu, and J. Wang, Mathematical models for devising the optimal SARS-CoV-2 strategy for eradication in China, South Korea, and Italy, J. Translat. Med. 18 (2020), 345.
[17] Y.N. Kyrychko, K.B. Blyuss, and I. Brovchenko, Mathematical modelling of the dynamics and containment of COVID-19 in Ukraine, Sci. Rep. 10 (2020), no. 1, 19662.
[18] P. Lancaster, Theory of Matrices, Academic Press, New York USA, 1969.
[19] M. Makhoul, H.H. Ayoub, H. Chemaitelly, Sh. Seedat, G.R. Mumtaz, S. Al-Omari, and L.J. Abu-Raddad, Epidemiological impact of SARS-CoV-2 vaccination: Mathematical modeling analyses, Vaccines 8 (2020), no. 4, 668.
[20] Mc. McDonnell, R.V. Exan, S. Loyd, L. Subramanian, K. Chalkidou, A.L. Porta, J. Li, E. Maiza, D. Reader, J. Rosenberg, J. Scannell, V. Thomas, R. Weintraub, and P. Yadav, COVID-19 Vaccine Predictions: Using Mathematical Modelling and Expert Opinions to Estimate Timelines and Probabilities of Success of COVID-19 Vaccines, Center for Global Development, 2020.
[21] S.M. Moghadas, Gaining insights into human viral diseases through mathematics, Eur. J. Epidem. 21 (2006), no. 5, 337-–342.
[22] H. Taheri, N. Eghbali, M. Pourabd, and H. Zhu, Assessment of the mathematical model for investigating Covid-19 peak as a global epidemic in Iran, Math. Anal. Convex Optim. 3 (2022), no. 2, 129-–142.
[23] M. Thompson, E. Stenehjem and S. Grannis, S.W. Ball, A.L. Naleway, T.C. Ong, M.B. DeSilva, K. Natarajan, C.H. Bozio, N. Lewis, and K. Dascomb, Effectiveness of COVID-19 vaccines in ambulatory and inpatient care settings, New Engl. J. Med. 385 (2021), no. 15, 1355–1371.
[24] G. Vries, T. Hillen, M. Lewis, B. Sch˜onfisch, and J. Muller, A Course in Mathematical Biology: Quantitative Modeling with Mathematical and Computational Methods, ser. Monographs on Mathematical Modeling and Computation, Society for Industrial and Applied Mathematics, 2006.
[25] L. Wang and R. Xu, Global stability of an SEIR epidemic model with vaccination, Int. J. Biomath. 9 (2016), no. 6, Article ID 1650082.
[26] W. Yang, A. Karspeck, and J. Shaman, Comparison of filtering methods for the modeling and retrospective forecasting of influenza epidemics, PLOS Comput. Bio. 10 (2014), no. 4.
[27] Z. Yu, J. Liu, X. Wang, X. Zhu, D. Wang, and G. Han, Efficient vaccine distribution based on a hybrid compartmental model, PLoS ONE. 11 (2016), no. 5, Article ID e0155416.
[29] L. Zou, F. Ruan, M. Huang, L. Liang, H. Huang, Z. Hong, J. Yu, M. Kang, Y. Song, J. Xia, and Q. Guo, SARSCoV- 2 viral load in upper respiratory specimens of infected patients, New England J. Med. 382 (2020), 1177-–1179.