[1] R. Almeida, Analysis of a fractional SEIR model with treatment, Appl. Math. Lett. 84 (2018), 56–62.
[2] R. Almeida, A.M.C. Brito da Cruz, N. Martins, M. Teresa, and T. Monteiro, An epidemiological MSEIR model described by the Caputo fractional derivative, Int. J. Dyn. Control 7 (2019), 776–784.
[3] Y.L. Chen, F.W. Liu, Q. Yu, and T.Z. Li, Review of fractional epidemic models, Appl. Math. Model. 97 (2021), 281–307.
[4] K. Diethelm, A fractional calculus based model for the simulation of an outbreak of dengue fever, Nonlinear Dyn. 71 (2013) 613–619.
[5] J.R. Graef, L.G. Kong, A. Ledoan, and M. Wang, Stability analysis of a fractional online social network model, Math. Comput. Simul. 178 (2020), 625–645.
[6] P.T. Karaji and N. Nyamoradi, Analysis of a fractional SIR model with general incidence function, Appl. Math. Lett. 108 (2020), 106499.
[7] W.O. Kermack and A.G. McKendrick, A contribution to mathematical theory of epidemics, Proc. Royal Soc. A 115 (1927), 700–721.
[8] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Boston, Elsevier, 2006.
[9] T. Khan, Z. Ullah, N. Ali, and G. Zaman, Modeling and control of the hepatitis B virus spreading using an epidemic model, Chaos Solitons Fractals 124 (2019), 1–9.
[10] Z.H. Liu and C.R. Tian, A weighted networked SIRS epidemic model, J. Differ. Equ. 269 (2020), 10995–11019.
[11] W. Lin, Global existence theory and chaos control of fractional differential equations, J. Math. Anal. Appl. 332 (2007), 709–726.
[12] R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and A. Vespignani, Epidemic processes in complex networks, Rev. Modern Phys. 87 (2015), 925–986.
[13] S.G. Samko, A.A. Kilbas, and O.I. Marichev, Fractional Integrals and Derivatives, Translated from the 1987 Russian original, Gordon and Breach, Yverdon, 1993.
[14] A. Slavik, Lotka-Volterra competition model on graphs, SIAM J. Appl. Dyn. Syst. 192 (2020), 725–762.
[15] A.A. Stanislavsky, Memory effects and macroscopic manifestation of randomness, Phys. Rev. E 61 (2008), no. 5, 4752–4759.
[16] C.R. Tian, Z.H. Liu, and S.G. Ruan, Asymptotic and transient dynamics of SEIR epidemic models on weighted networks, Eur. J. Appl. Math. 34 (2023), 238–261.
[17] C.R. Tian, Q.Y. Zhang, and L. Zhang, Global stability in a networked SIR epidemic model, Appl. Math. Lett. 107 (2020), 106444.
[18] P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endmic equlibria for compartmental models of diesease transmission, Math. Biosci. 180 (2002), 29–48.