[1] H. Argoubi, B. Samet, and C. Vetro, Nonlinear contractions involving simulation functions in a metric space with a partial order, J. Nonlinear Sci. Appl. 8 (2015), 1082–1094.
[2] H. Aydi, A. Felhi, E. Karapinar, and F.A. Alojail, Fixed points on quasi-metric spaces via simulation functions and consequences, J. Math. Anal. 9 (2018), no. 2, 10–24.
[3] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations itegrales, Fund. Math. 3 (1922), 133–181.
[4] S.H. Bonab, R. Abazari, A.B. Vakilabad, and H. Hosseinzadeh, Generalized metric spaces endowed with vector-valued metrics and matrix equations by tripled fixed point theorems, J. Inequal. Appl. 204 (2020), 1–16.
[5] S.H. Bonab, V. Parvaneh, H. Hosseinzadeh, A. Dinmohammadi, and B. Mohammadi, Some common fixed point results via α-series for a family of js-contraction type mappings, Fixed Point Theory and Fractional Calculus, Forum for Interdisciplinary Mathematics, Springer, Singapore, 2022.
[6] S.H. Bonab, H. Hosseinzadeh V. Parvaneh, N.A. Shotorbani, H. Aydi, and S.J. Ghoncheh, n-tuple fixed point theorems via α-series in C*-algebra-valued metric spaces with an application in integral equations, Int. J. Ind. Math. 15 (2023), no. 2, 95–105.
[7] S. Chandok, A. Chanda, L.K. Dey, M. Pavlovic, and S. Radenovic, Simulation functions and Geraghty type results, Bol. Soc. Paranaense Mat. 39 (2021), no. 1, 35–50.
[8] P. Debnath, H.M. Srivastava, K. Chakraborty, and P. Kumam, (η, ψ)-rational f-contractions and weak-Wardowski contractions in a triple-controlled modular-type metric space, Adv. Number Theory Appl. Anal., 2023, pp. 279-308.
[9] R. Gubran, W.M. Alfaqieh, and M. Imdad, Common fixed point results for α-admissible mappings via simulation function, J. Anal. 25 (2017), 281–290.
[10] S. Gubran, W.M. Alfaqih, and M. Imdad, Fixed point results via tri-simulation function, Ital. J. Pure Appl. Math. 45 (2021), 419–430.
[11] H. Hosseinzadeh, S.H. Bonab, and K.A. Sefidab, Some common fixed point theorems for four mapping in generalized metric spaces, Thai J. Math. 20 (2022), no. 1, 425–437.
[12] H. Hosseinzadeha, H. Isik, and S.H. Bonaba, n-tuple fixed point theorems via α-series on partially ordered cone metric spaces, Int. J. Nonlinear Anal. Appl. 13 (2022), no. 2, 3115–3126.
[13] E. Karapinar, Fixed points results via simulation functions, Filomat 30 (2016), no. 8, 2343–2350.
[14] F. Khojasteh, S. Shukla, and S. Radenovic, A new approach to the study of fixed point theory for simulation functions, Filomat 29 (2015), no. 6, 1189–1194.
[15] O. Popescu, Some new fixed point theorems for α-Geraghty contractive type maps in metric spaces, Fixed Point Theory Appl. 190 (2014), 1–12.
[16] A. Roldan, E. Karapinar, C. Roldan, and J. Martınez-Moreno, Coincidence point theorems on metric spaces via simulation functions, J. Comput. Appl. Math. 275 (2015), 345–355.
[17] B. Samet, C. Vetro, and P. Vetro, Fixed point theorem for (α−ψ)-contractive type mappings, Nonlinear Anal. 75 (2012), 2154–2165.
[18] Y. Talaei, S. Micula, H. Hosseinzadeh, and S. Noeiaghdam, A novel algorithm to solve nonlinear fractional quadratic integral equations, AIMS Math. 7 (2022), no. 7, 13237–13257.