[1] C. Affonso, A.L.D. Rossi, F.H.A. Vieira, and A.C.P. de Leon Ferreira, Deep learning for biological image classification, Expert Syst. Appl. 85 (2017), 114–122.
[2] D.M Ahmed, S.Y. Ameen, N. Omar, S.F. Kak, Z.N. Rashid, H.M. Yasin, I.M. Ibrahim, A.A. Salih, N.O. Salim, and A.M. Ahmed, A state of art for survey of combined iris and fingerprint recognition systems, Asian J. Res. Comput. Sci. 10 (2021), no. 1, 18–33.
[3] S. Ahmad Radzi, M. Khalil-Hani, and R. Bakhteri, Finger-vein biometric identification using convolutional neural network, Turkish J. Electr. Eng. Comput. Sci. 24 (2016), no. 3, 1863–1878.
[4] M. Ahsan, M.A. Based, J. Haider, and M. Kowalski, An intelligent system for automatic fingerprint identification using feature fusion by Gabor filter and deep learning, Comput. Electr. Eng. 95 (2021), 107387.
[5] M.M.H. Ali, V.H. Mahale, P. Yannawar, and A.T. Gaikwad, Overview of fingerprint recognition system, Int. Conf. Electr. Electron. Optim. Tech. ICEEOT 2016, pp. 1334–1338.
[6] S. Almabdy and L. Elrefaei, Deep convolutional neural network-based approaches for face recognition, Appl. Sci. (Switzerland) 9 (2019), no. 20.
[7] D.L. Andreea-Monica, S. Moldovanu, and L. Moraru, A fingerprint matching algorithm using the combination of edge features and convolution neural networks, Inventions 7 (2022), no. 2, 1–13.
[8] S. Anton, T. Artem, P. Andrey, and K. Igor, Modification of VGG neural network architecture for unimodal and multimodal biometrics, IEEE East-West Design and Test Symposium, EWDTS Proc., 2020, pp. 1–4.
[9] A. Avci, M. Kocakulak, and N. Acir, Convolutional neural network designs for finger-vein-based biometric identification, ELECO 11th Int. Conf. Electr. Electron. Eng., 2019, pp. 580–584.
[10] B. Bakhshi and H. Veisi, End-to-end fingerprint verification based on convolutional neural network, ICEE 27th Iran. Conf. Electr. Eng., 2019, pp. 1994–1998.
[11] M.M. Bejani and M. Ghatee, A systematic review on overfitting control in shallow and deep neural networks, Artif. Intell. Rev. 54 (2021), 6391–6438.
[12] T.R. Borah, K.K. Sarma, and P.H. Talukdar, Retina recognition system using adaptive neuro-fuzzy inference system, IEEE Int. Conf. Comput. Commun. Control. IC4 2015, 2016, pp. 1–6.
[13] I. Boucherit, M. Ould, H. Hentabli, and B. Affendi, Finger vein identification using deeply-fused Convolutional Neural Network, J. King Saud Univ. Comput. Inf. Sci. 34 (2022), no. 3, 646–656.
[14] L. Cai, J. Gao, and D. Zhao, A review of the application of deep learning in medical image classification and segmentation, Ann. Transl. Medicine 8 (2020), no. 11, 713–713.
[15] E. Cherrat, R. Alaoui, and H. Bouzahir, Convolutional neural networks approach for multimodal biometric identification system using the fusion of fingerprint, finger-vein and face images, PeerJ Comput. Sci. 2020 (2020), no. 1, 1–15.
[16] T.Z. Chin, A. Saidatul, and Z. Ibrahim, Exploring EEG based authentication for imaginary and non-imaginary tasks using power spectral density method, IOP Conf. Ser. Mater. Sci. Eng. 557 (2019), no. 1, 012031.
[17] A.M.M. Chowdhury and M.H. Imtiaz, Contactless fingerprint recognition using deep learning & mdash: A systematic review, J. Cybersecurity Priv. 2 (2022), no. 3, 714–730.
[18] M. Choudhary, V. Tiwari, and U. Venkanna, Iris anti-spoofing through score-level fusion of handcrafted and data-driven features, Appl. Soft Comput. J. 91 (2020).
[19] S. Dargan and M. Kumar, A comprehensive survey on the biometric recognition systems based on physiological and behavioral modalities, Expert Syst. Appl. 143 (2020), 113114.
[20] L.M. Dinca and G.P. Hancke, The fall of one, the rise of many: A survey on multi-biometric fusion methods, IEEE Access 5 (2017), 6247–6289.
[21] K. Fatima, S. Nawaz and S. Mehrban, Biometric authentication in health care sector: A survey, 3rd Int. Conf. Innov. Comput. ICIC, 2019, pp. 1–10.
[22] P.L. Gald´amez, W. Raveane, and A.G. Arrieta, A brief review of the ear recognition process using deep neural networks, J. Appl. Log. 24 (2017), 62–70.
[23] U. Gawande and Y. Golhar, Biometric security system: A rigorous review of unimodal and multimodal biometrics techniques, Artic. Int. J. Biomet. 10 (2018), no. 2, 142–175.
[24] D. Gumusbas, T. Yildirim, M. Kocakulak, and N. Acir, Capsule network for finger-vein-based biometric identification, IEEE Symp. Ser. Comput. Intell. SSCI, 2019, pp. 437–441.
[25] S. Haware and A. Barhatte, Retina-based biometric identification using SURF and ORB feature descriptors, Int. Conf. Microelectron. Devices, Circuits Syst. ICMDCS, 2017, pp. 1–6.
[26] W. Jian, Y. Zhou, and H. Liu, Lightweight convolutional neural network based on singularity ROI for fingerprint classification, IEEE Access 8 (2020), 54554–54563.
[27] M. Karakaya and E.T. Celik, Effect of pupil dilation on off-angle iris recognition, J. Electr. Imaging, 28 (2019), no. 3, 033022.
[28] N. Kaur, A study of biometric identification and verification system, Int. Conf. Adv. Comput. Innov. Technol. Eng. ICACITE, 2021, pp. 60–64.
[29] I. Kovac and P. Marak, Openfinger: Towards a combination of discriminative power of fingerprints and finger vein patterns in multimodal biometric system, Tatra Mt. Math. Publ. 77 (2020), no. 1, 109–138.
[30] Y. Li, Research and application of deep learning in image recognition, IEEE 2nd Int. Conf. Power, Electron. Comput. Appl. ICPECA, 2022, pp. 994–999.
[31] C. Lin and A. Kumar, Matching contactless and contact-based conventional fingerprint images for biometrics identification, IEEE Trans. Image Process. 27 (2018), no. 4, 2008–2021.
[32] J. Mason, R. Dave, P. Chatterjee, I. Graham-Allen, A. Esterline, and K. Roy, An investigation of biometric authentication in the healthcare environment, Array 8 (2020), 100042.
[33] H. Mehraj and A.H. Mir, A survey of biometric recognition using deep learning, EAI Endorsed Trans. Energy Web 8 (2021), no. 33, 1–16.
[34] P. Melzi, C. Rathgeb, R. Tolosana, R. Vera-Rodriguez, and C. Busch, An overview of privacy-enhancing technologies in biometric recognition, arXiv preprint arXiv:2206.10465, (2022).
[35] G. Meng, P. Fang, and B. Zhang, Finger vein recognition based on convolutional neural network, MATEC Web Conf., 2017.
[36] S. Minaee, E. Azimi and A. Abdolrashidi, FingerNet: pushing the limits of fingerprint recognition using convolutional neural network, arXiv preprint arXiv:1907.12956, (2019).
[37] J.C. Moreno-Rodriguez, J.C. Atenco-Vazquez, J.M. Ramirez-Cortes, R. Arechiga-Martinez, P. Gomez-Gil, and R. Fonseca-Delgado, BIOMEX-DB: A cognitive audiovisual dataset for unimodal and multimodal biometric systems, IEEE Access 9 (2021), 111267–111276.
[38] S.M.M. Najeeb, R.R.O. Al-Nima, and M.L. Al-Dabag, Reinforced deep learning for verifying finger veins, Int. J. online Biomed. Eng. 17 (2021), no. 7, 19–27.
[39] K.J. Noh, J. Choi, J.S. Hong, and K.R. Park, Finger-vein recognition based on densely connected convolutional network using score-level fusion with shape and texture images, IEEE Access 8 (2020), 96748–96766.
[40] M.O. Oloyede and G.P. Hancke, Unimodal and multimodal biometric sensing systems: A review, IEEE Access 4 (2016), 7532–7555.
[41] M. Pak and S. Kim, A review of deep learning in image recognition, Proc. 4th Int. Conf. Comput. Appl. Inf. Process. Technol. CAIPT 2017, 2018, pp. 1–3.
[42] B. Pandya, G. Cosma, A.A. Alani, and A. Taherkhani, Fingerprint classification using a deep convolutional neural network, 4th IEEE Int. Conf. Inf. Manag., 2018, pp. 86–91.
[43] J. Priesnitz, C. Rathgeb, N. Buchmann, C. Busch, and M. Margraf, An overview of touchless 2D fingerprint recognition, EURASIP J. Image Video Process. 2021 (2021), 8.
[44] H. Qin and P. Wang, Finger-vein verification based on LSTM recurrent neural networks, Appl. Sci. 9 (2019), no. 8, 1–18.
[45] J. Ribeiro Pinto, J.S. Cardoso, and A. Lourenco, Evolution, current challenges, and future possibilities in ECG Biometrics, IEEE Access 6 (2018), 34746–34776.
[46] T. Sabhanayagam, V.P. Venkatesan and K. Senthamaraikannan, A comprehensive survey on various biometric systems, Int. J. Appl. Eng. Res. 13 (2018), no. 5, 2276–2297.
[47] F. Saeed, M. Hussain, and H.A. Aboalsamh, Automatic fingerprint classification using deep learning technology (DeepFKTNet), Math. 10 (2022), no. 8, 1285.
[48] P. Saikia, R.D. Baruah, S.K. Singh, and P.K. Chaudhuri, Artificial neural networks in the domain of reservoir characterization: A review from shallow to deep models, Comput. Geosci. 135 (2020), 104357.
[49] R. Saini, B. Kaur, P. Singh, P. Kumar, and P.P. Roy, Don’t just sign use brain too: A novel multimodal approach for user identification and verification, Inf. Sci. 430 (2018), 163–178.
[50] K. Shaheed, H. Liu, G. Yang, I. Qureshi, J. Gou, and Y. Yin, A systematic review of finger vein recognition techniques, Inf. 9 (2018), no. 9, 213.
[51] M. Sharif, M. Raza, J.H. Shah, M. Yasmin, and S.L. Fernandes, An Overview of Biometrics Methods, Handbook of Multimedia Information Security: Techniques and Applications, 2019.
[52] S.A. Shawkat, K.S.L. Al-Badri, and A.I. Turki, The new hand geometry system and automatic identification, Period. Engin. Natural Sci. 7 (2019), no. 3, 996–1008.
[53] K. Siddique, Z. Akhtar, and Y. Kim, Biometrics vs passwords: A modern version of the tortoise and the hare, Comput. Fraud Secur. 2017 (2017), no. 1, 13–17.
[54] G.K. Sidiropoulos, P. Kiratsa, P. Chatzipetrou, and G.A. Papakostas, Feature extraction for finger-vein-based identity recognition, J. Imag. 7 (2021), no. 5.
[55] M. Singh, R. Singh, and A. Ross, A comprehensive overview of biometric fusion, Inf. Fusion 52 (2019), 187–205.
[56] S. Socheat and T. Wang, Fingerprint enhancement, minutiae extraction and matching techniques, J. Comput. Commun. 8 (2020), no. 5, 55–74.
[57] J.M. Song, W. Kim, and K.R. Park, Finger-vein recognition based on deep densenet using composite image, IEEE Access 7 (2019), 66845–66863.
[58] A. Takahashi, Y. Koda, K. Ito, and T. Aoki, Fingerprint feature extraction by combining texture, minutiae, and frequency spectrum using multi-task CNN, IJCB IEEE/IAPR Int. Jt. Conf. Biometrics, 2020, pp. 1–8.
[59] L.D. Tamang and B.W. Kim, FVR-Net: Finger vein recognition with convolutional neural network using hybrid pooling, Appl. Sci. 12 (2022), no. 15, 7538.
[60] H.M. Therar, E.A. Mohammed and A.J. Ali, Biometric signature based public key security system, 3rd Int. Conf. Adv. Sci. Eng. ICOASE 2020, pp. 133–138.
[61] M. Wang and W. Deng, Deep face recognition: A survey, Neurocomput. 429 (2021), 215–244.
[62] K.N. Win, K. Li, J. Chen, P.F. Viger, and K. Li, Fingerprint classification and identification algorithms for criminal investigation: A survey, Futur. Gener. Comput. Syst. 110 (2020), 758–771.
[63] F. Wu, J. Zhu, and X. Guo, Fingerprint pattern identification and classification approach based on convolutional neural networks, Neural Comput. Appl. 32 (2020), no. 10, 5725–5734.
[64] W. Yang, S. Wang, J. Hu, G. Zheng, and C. Valli, A fingerprint and finger-vein based cancelable multi-biometric system, Pattern Recogn. 78 (2018), 242–251.
[65] J.C. Zapata, C.M. Duque, Y. Rojas-Idarraga, M.E. Gonzalez, J.A. Guzman, and M.A. Becerra Botero, Data fusion applied to biometric identification–A review, Communicat. Comput. Inf. Sci. 735 (2017), 721–733.