[1] C.C. Aggarwal and C.C. Aggarwal, Social and trust-centric recommender systems, Recomm. Syst.: The Textbook (2016), pp. 345–384.
[2] M. Aghaei, P. Asghari, S. Adabi, and H. Haj Seyyed Javadi, Using recommender clustering to improve quality of services with sustainable virtual machines in cloud computing, Cluster Comput. 26 (2023), no. 2, 1479–1493.
[3] Z. Ali, S. Khusro, and I. Ullah, A hybrid book recommender system based on table of contents (toc) and association rule mining, Proc. 10th Int. Conf. Inf. Syst., 2016, pp. 68–74.
[4] X. Amatriain, A. Jaimes, N. Oliver, and J. M. Pujol, Data mining methods for recommender systems, Recommender systems handbook, Springer, 2010, pp. 39–71.
[5] B. Barzegar, H. Motameni, and A. Movaghar, Eatsdcd: A green energy-aware scheduling algorithm for parallel task-based application using clustering, duplication and dvfs technique in cloud datacenters, J. Intell. Fuzzy Syst. 36 (2019), no. 6, 5135–5152.
[6] J. Basiri, A. Shakery, B. Moshiri, and M. Zi Hayat, Alleviating the cold-start problem of recommender systems using a new hybrid approach, 5th Int. Symp.Telecommun., IEEE, 2010, pp. 962–967.
[7] J. Basiri, A. Shakery, B. Moshiri, and M. Zi Hayat, Addressing the new user cold-start problem in recommender systems using ordered weighted averaging operator, Int. J. Inf. Commun.Technol. Res. 2 (2010), no. 4, 79–87.
[8] J. Beel, C. Breitinger, S. Langer, A. Lommatzsch, and B. Gipp, Towards reproducibility in recommender-systems research, User Model. User-adapted Interact. 26 (2016), 69–101.
[9] H. Bouazza, B. Said, and F. Zohra Laallam, A hybrid IoT services recommender system using social IoT, J. King Saud Univ.-Comput. Inf. Sci. 34 (2022), no. 8, 5633–5645.
[10] L. Cao, Non-iid recommender systems: A review and framework of recommendation paradigm-shifting, Engineering 2 (2016), no. 2, 212–224.
[11] W. Carrer-Neto, M. Hernandez-Alcaraz, R. Valencia-Garcıa, and F. Garcıa-Sanchez, Social knowledge-based recommender system. application to the movies domain, Expert Syst. Appl. 39 (2012), no. 12, 10990–11000.
[12] Y. Ho Cho, J. Kim, and S. Hie Kim, A personalized recommender system based on web usage mining and decision tree induction, Expert Syst. Appl. 23 (2002), no. 3, 329–342.
[13] B. Deebak and F. Al-Turjman, A novel community-based trust aware recommender systems for big data cloud service networks, Sustain. Cities Soc. 61 (2020), 102274.
[14] M. D. Ekstrand, J.T. Riedl, J.A. Konstan, Collaborative filtering recommender systems, Found. Trends Human–Comput. Interact. 4 (2011), no. 2, 81–173.
[15] M. Etemadi, S. Bazzaz Abkenar, A. Ahmadzadeh, M. Haghi Kashani, P. Asghari, M. Akbari, and E. Mahdipour, A systematic review of healthcare recommender systems: Open issues, challenges, and techniques, Expert Syst. Appl. 213 (2023), 118823.
[16] S. Fatehi, Task scheduling optimization based on heuristic algorithm for heterogeneous cloud computing platforms, Int. J. Nonlinear Anal. Appl. 13 (2022), no. 2, 2743–2750.
[17] S. Fatehi, H. Motameni, B. Barzegar, and M. Golsorkhtabaramiri, Energy aware multi objective algorithm for task scheduling on dvfs-enabled cloud datacenters using fuzzy nsga-ii, Int. J. Nonlinear Anal. Appl.12 (2021), no. 2, 2303–2331.
[18] D. Gavalas, V. Kasapakis, C. Konstantopoulos, K. Mastakas, and G. Pantziou, A survey on mobile tourism recommender systems, Third Int. Conf. Commun. Inf. Technol., IEEE, 2013, pp. 131–135.
[19] D. Gavalas, C. Konstantopoulos, K. Mastakas, and G. Pantziou, Mobile recommender systems in tourism, J. network Comput. Appl. 39 (2014), 319–333.
[20] M. Ghobakhloo and M. Ghobakhloo, Design of a personalized recommender system using sentiment analysis in social media (case study: Banking system), Soc. Network Anal. Min. 12 (2022), no. 1, 84.
[21] L. Guo, B. Jin, C. Yao, H. Yang, D. Huang, F.Wang, Which doctor to trust: A recommender system for identifying the right doctors, J. Med. Internet Res. 18 (2016), no. 7, e6015.
[22] V.L. Hallappanavar, C.M. Bulla, and MN. Birje, Ann based estimation of reputation of newcomer web services in fog computing, Int. Conf. Comput. Commun. Inf., IEEE, 2021, pp. 1–7.
[23] Y. Himeur, A. Alsalemi, A. Al-Kababji, F. Bensaali, A. Amira, C. Sardianos, G. Dimitrakopoulos, and I. Varlamis, A survey of recommender systems for energy efficiency in buildings: Principles, challenges and prospects, Inf. Fusion 72 (2021), 1–21.
[24] P. Kosmides, C. Remoundou, K. Demestichas, I. Loumiotis, E. Adamopoulou, and M. Theologou, A location recommender system for location-based social networks, Int. Conf. Math. Comput. Sci. Ind., IEEE, 2014, pp. 277–280.
[25] G. Liang, C. Sun, J. Zhou, F. Luo, J. Wen, and X. Li, A general matrix factorization framework for recommender systems in multi-access edge computing network, Mobile Networks Appl. 27 (2022), no. 4, 1629–1641.
[26] W. Liang, S. Xie, J. Cai, J. Xu, Y. Hu, Y. Xu, and M. Qiu, Deep neural network security collaborative filtering scheme for service recommendation in intelligent cyber–physical systems, IEEE Internet Things J. 9 (2021), no. 22, 22123–22132.
[27] J. Lu, D. Wu, M. Mao, W. Wang, and G. Zhang, Recommender system application developments: A survey, Decision Support Syst. 74 (2015), 12–32.
[28] Z. Ma, M. H. Nejat, H. Vahdat-Nejad, B. Barzegar, and S. Fatehi, An efficient hybrid ranking method for cloud computing services based on user requirements, IEEE Access 10 (2022), 72988–73004.
[29] J. Masoudi, B. Barzegar, and H. Motameni, Energy-aware virtual machine allocation in dvfs-enabled cloud data centers, IEEE Access 10 (2021), 3617–3630.
[30] S.E. Middleton, N.R. Shadbolt, and D.C. De Roure, Ontological user profiling in recommender systems, ACM Trans. Inf. Syst. 22 (2004), no. 1, 54–88.
[31] S.H. Min and I. Han, Recommender systems using support vector machines, Int. Conf. Web Engin., Springer, 2005, pp. 387–393.
[32] M.H. Nejat, H. Motameni, H. Vahdat-Nejad, and B. Barzegar, Efficient cloud service ranking based on uncertain user requirements, Cluster Comput. (2022), 1–18.
[33] Badieh. Nikzad, B. Barzegar, and H. Motameni, Sla-aware and energy-efficient virtual machine placement and onsolidation in heterogeneous dvfs enabled cloud datacenter, IEEE Access 10 (2022), 81787–81804.
[34] Z. Peng, B. Barzegar, M. Yarahmadi, H. Motameni, and P. Pirouzmand, Energy-aware scheduling of workflow using a heuristic method on green cloud, Sci. Program. 2020 (2020), 1–14.
[35] Y. Qian, Y. Zhang, X. Ma, H. Yu, and L. Peng, Ears: Emotion-aware recommender system based on hybrid information fusion, Inf. Fusion 46 (2019), 141–146.
[36] T. Shao, X. Yang, F. Wang, C. Yan, and A. Kr Luhach, Trusted service evaluation for mobile edge users: Challenges and reviews, Complexity 2021 (2021), 1–10.
[37] B. Shapira, L. Rokach, and F. Ricci, Recommender systems: Techniques, applications, and challenges, Recommender systems handbook, Springer, 2021, pp. 1–35.
[38] C. Sharma and P. Bedi, Ccfrs–community-based collaborative filtering recommender system, J. Intell. Fuzzy Syst. 32 (2017), no. 4, 2987–2995.
[39] S.K. Shinde and U. Kulkarni, Hybrid personalized recommender system using centering-bunching based clustering algorithm, Expert Syst. Appl. 39 (2012), no. 1, 1381–1387.
[40] J. Son and S. Bum Kim, Academic paper recommender system using multilevel simultaneous citation networks, Decision Support Syst. 105 (2018), 24–33.
[41] J. Sun, Z. Wang, X. Luo, P. Shi, W. Wang, L. Wang, J.H. Wang, and W. Zhao, A parallel recommender system using a collaborative filtering algorithm with correntropy for social networks, IEEE Trans. Network Sci. Engin. 7 (2018), no. 1, 91–103.
[42] Q. Zhang, J. Lu, and Y. Jin, Artificial intelligence in recommender systems, Complex Intell. Syst. 7 (2021), 439–457.
[43] Y. Zhang, Grorec: A group-centric intelligent recommender system integrating social, mobile and big data technologies, IEEE Trans. Serv. Comput. 9 (2016), no. 5, 786–795.
[44] D. Zhong, G. Yang, J. Fan, B. Tian, and Y. Zhang, A service recommendation system based on rough multidimensional matrix in cloud-based environment, Comput. Standards Interfaces 82 (2022), 103632.