[1] A. Azam and M. Arshad, Kannan fixed point theorem on generalized metric spaces, J. Nonlinear Sci. Appl. 1 (2008), 45–48.
[2] S. Banach, Sur les operations dans les ensembles abstraits et leur applications integrales, Fund. Math. 3 (1922), 133–181.
[3] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. (Debr.) 57 (2000), 31–37.
[4] F.E. Browder, On the convergence of successive approximations for nonlinear functional equations, Indag. Math. 30 (1968), 27–35.
[5] M. Jleli, E. Karapinar, and B. Samet, Further generalizations of the Banach contraction principle, J. Inequal. Appl. 2014 (2014), Paper No. 439.
[6] M. Jleli and B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl. 2014 (2014), Paper No. 38.
[7] R. Kannan, Some results on fixed points-II, Amer. Math. Month. 76 (1969), 405–408.
[8] A. Kari, M. Rossafi, E. Marhrani, and M. Aamri, Fixed-point theorem for nonlinear F-contraction via w-distance, Adv. Math. Phys. 2020 (2020), Article ID 6617517.
[9] A. Kari, M. Rossafi, E. Marhrani, and M. Aamri, New fixed point theorems for θ − ϕ-contraction on complete rectangular b-metric spaces, Abstr. Appl. Anal. 2020 (2020), Article ID 8833214.
[10] A. Kari, M. Rossafi, E. Marhrani, and M. Aamri, Fixed-point theorems for θ − ϕ-contraction in generalized asymmetric metric spaces, Int. J. Math. Math. Sci. 2020 (2020), Article ID 8867020.
[11] M.S. Khan, M. Swaleh, and S. Sessa, Fixed point theorems by altering distances between the points, Bull. Aust. Math. Soc. 30 (1984), no. 1, 1–9.
[12] W.A. Kirk and N. Shahzad, Generalized metrics and Caristi’s theorem, Fixed Point Theory Appl. 2013 (2013), Paper No. 129.
[13] H. Lakzian and B. Samet, Fixed point for (ψ, ϕ)-weakly contractive mappings in generalized metric spaces, Appl. Math. Lett. 25 (2012), no. 5, 902–906.
[14] H. Piri, S. Rahrovi, and Zarghami, Some fixed point theorems on generalized asymmetric metric spaces, Asian-Eur. J. Math. 14 (2021), no. 7, Article ID 2150109.
[15] S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull. 14 (1971), 121–124.
[16] B. Samet, A fixed point theorem in a generalized metric space for mappings satisfying a contractive condition of integral type, Int. J. Math. Anal. 3 (2009), 25–28.
[17] B. Samet, Discussion on a fixed point theorem of Banach-Cacciopli type on a class of generalized metric spaces, Publ. Math. Debrecen 76 (2010), 493–494.
[18] I.R. Sarma, J.M. Rao, and S.S. Rao, Contractions over-generalized metric spaces, J. Nonlinear. Sci. Appl. 2 (2009), 180–182.