Fixed point theorems for $\theta$-$\Omega$-contraction on $ (\alpha,\eta )$-$b$-rectangular metric spaces

Document Type : Research Paper

Authors

1 Laboratory of Analysis, Modeling and Simulation Faculty of Sciences Ben M’Sik, Hassan II University, B.P. 7955 Casablanca, Morocco

2 LaSMA Laboratory Department of Mathematics, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, P. O. Box 1796 Fez Atlas, Morocco

3 Department of Data Science, Daejin University, Kyunggi 11159, Korea

10.22075/ijnaa.2023.28290.3853

Abstract

In this paper, we consider a new extension of the Banach contraction principle, $\theta$-$\Omega$-contraction inspired by the concept of $\theta$-contraction in $(\alpha,\eta )$-$b$-rectangular metric spaces to study the existence and uniqueness of fixed point theorems for the mappings in metric spaces. Moreover, we discuss some illustrative examples to highlight the realized improvements.

Keywords

[1] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math. 3 (1922), 133—181.
[2] F.E. Browder, On the convergence of successive approximations for nonlinear functional equations, Indag. Math. 30 (1968), 27-–35.
[3] R. George, S. Radenovic, K.P. Reshma, and S. Shukla, Rectangular b-metric spaces and contraction principle, J. Nonlinear Sci. Appl. 8 (2015), 1005–1013.
[4] N. Hussain, M. A. Kutbi, and P. Salimi, Fixed point theory in α-complete metric spaces with applications, Abstr. Appl. Anal. 2014 (2014), Article ID 280817.
[5] N. Hussain, V. Parvaneh, B.A.S. Alamri, and Z. Kadelburg, F-HR-type contraction on (α, η)-complete rectangular b-metric spaces, J. Nonlinear Sci. Appl. 10 (2017), no. 3, 1030–1043.
[6] N. Hussain and P. Salimi, Suzuki-Wardowski type fixed point theorems for α-G-F-contractions, Taiwan. J. Math. 18 (2014), no. 6, 879–1895.
[7] M. Jleli, E. Karapinar, and B. Samet, Further generalizations of the Banach contraction principle, J. Inequal. Appl. 2014 (2014), Paper No. 439.
[8] M. Jleli and B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl. 2014 (2014), Paper No. 38.
[9] R. Kannan, Some results on fixed points-II, Am. Math. Month. 76 (1969), 405-–408.
[10] A. Kari, M. Rossafi, E. Marhrani, and M. Aamri, New fixed point theorems for θ-ϕ-contraction on complete rectangular b-metric spaces, Abstr. Appl. Anal. 2020 (2020), Article ID 8833214.
[11] A. Kari, M. Rossafi, E. Marhrani, and M. Aamri, Fixed-point theorem for nonlinear F-contraction via w-distance, Adv. Math. Phys. 2020 (2020), Article ID 6617517.
[12] A. Kari, M. Rossafi, E. Marhrani, and M. Aamri, θ-ϕ-contraction on (α, η)-complete rectangular b-metric spaces, Int. J. Math. Math. Sci. 2020 (2020), Article ID 5689458.
[13] A. Kari, M. Rossafi, H. Saffaj, E. Marhrani, and M. Aamri, Fixed-point theorems for θ-ϕ-contraction in generalized asymmetric metric spaces, Int. J. Math. Math. Sci. 2020 (2020), Article ID 8867020.
[14] S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull. 14 (1971), no. 2, 121–124.
[15] J.R. Roshan, V. Parvaneh, Z. Kadelburg, and N. Hussain, New fixed point results in b-rectangular metric spaces, Nonlinear Anal.: Model. Control 21 (2016), no. 5, 614—634.
[16] M. Rossafi and A. Kari, Some fixed point theorems for F-expansive mapping in generalized metric spaces, Open J. Math. Anal. 5 (2021), no. 2, 17–30.
[17] M. Rossafi and A. Kari, Fixed points for weakly contractive mappings in rectangular b-metric spaces, Int. J. Nonlinear Anal. Appl. 14 (2023) 1, 763–783.
[18] M. Rossafi, A. Kari, E. Marhrani, and M. Aamri, Fixed point theorems for generalized (θ −ϕ)-expansive mapping in rectangular metric spaces, Abstr. Appl. Anal. 2021 (2021), Article ID 6642723.
[19] M. Rossafi, A. Kari, C. Park, and J. Lee, New fixed point theorems for θ-ϕ-contraction on b-metric spaces, J. Math. Comput. Sci. 29 (2023), no. 1, 12–27.
[20] L. Wangwe and S. Kumar, Fixed point theorem for s-ϕ-Ψ-F-contraction mappings in ordered partial metric space with an application to integral equation, Nonlinear Stud. 28 (2021), no. 1, 1207–1223.
[21] L. Wangwe and S. Kumar, A common fixed point theorem for generalized F-Kannan Suzuki type mapping in TV S valued cone metric space with applications, J. Math. 2022 (2022), Article ID 6504663.
[22] D. Zheng, Z. Cai, and P. Wang, New fixed point theorems for θ-φ-contraction in complete metric spaces, J. Nonlinear Sci. Appl. 10 (2017), 2662—2670.

Articles in Press, Corrected Proof
Available Online from 26 June 2024
  • Receive Date: 04 September 2022
  • Accept Date: 15 February 2023