[1] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math. 3 (1922), 133—181.
[2] F.E. Browder, On the convergence of successive approximations for nonlinear functional equations, Indag. Math. 30 (1968), 27-–35.
[3] R. George, S. Radenovic, K.P. Reshma, and S. Shukla, Rectangular b-metric spaces and contraction principle, J. Nonlinear Sci. Appl. 8 (2015), 1005–1013.
[4] N. Hussain, M. A. Kutbi, and P. Salimi, Fixed point theory in α-complete metric spaces with applications, Abstr. Appl. Anal. 2014 (2014), Article ID 280817.
[5] N. Hussain, V. Parvaneh, B.A.S. Alamri, and Z. Kadelburg, F-HR-type contraction on (α, η)-complete rectangular b-metric spaces, J. Nonlinear Sci. Appl. 10 (2017), no. 3, 1030–1043.
[6] N. Hussain and P. Salimi, Suzuki-Wardowski type fixed point theorems for α-G-F-contractions, Taiwan. J. Math. 18 (2014), no. 6, 879–1895.
[7] M. Jleli, E. Karapinar, and B. Samet, Further generalizations of the Banach contraction principle, J. Inequal. Appl. 2014 (2014), Paper No. 439.
[8] M. Jleli and B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl. 2014 (2014), Paper No. 38.
[9] R. Kannan, Some results on fixed points-II, Am. Math. Month. 76 (1969), 405-–408.
[10] A. Kari, M. Rossafi, E. Marhrani, and M. Aamri, New fixed point theorems for θ-ϕ-contraction on complete rectangular b-metric spaces, Abstr. Appl. Anal. 2020 (2020), Article ID 8833214.
[11] A. Kari, M. Rossafi, E. Marhrani, and M. Aamri, Fixed-point theorem for nonlinear F-contraction via w-distance, Adv. Math. Phys. 2020 (2020), Article ID 6617517.
[12] A. Kari, M. Rossafi, E. Marhrani, and M. Aamri, θ-ϕ-contraction on (α, η)-complete rectangular b-metric spaces, Int. J. Math. Math. Sci. 2020 (2020), Article ID 5689458.
[13] A. Kari, M. Rossafi, H. Saffaj, E. Marhrani, and M. Aamri, Fixed-point theorems for θ-ϕ-contraction in generalized asymmetric metric spaces, Int. J. Math. Math. Sci. 2020 (2020), Article ID 8867020.
[14] S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull. 14 (1971), no. 2, 121–124.
[15] J.R. Roshan, V. Parvaneh, Z. Kadelburg, and N. Hussain, New fixed point results in b-rectangular metric spaces, Nonlinear Anal.: Model. Control 21 (2016), no. 5, 614—634.
[16] M. Rossafi and A. Kari, Some fixed point theorems for F-expansive mapping in generalized metric spaces, Open J. Math. Anal. 5 (2021), no. 2, 17–30.
[17] M. Rossafi and A. Kari, Fixed points for weakly contractive mappings in rectangular b-metric spaces, Int. J. Nonlinear Anal. Appl. 14 (2023) 1, 763–783.
[18] M. Rossafi, A. Kari, E. Marhrani, and M. Aamri, Fixed point theorems for generalized (θ −ϕ)-expansive mapping in rectangular metric spaces, Abstr. Appl. Anal. 2021 (2021), Article ID 6642723.
[19] M. Rossafi, A. Kari, C. Park, and J. Lee, New fixed point theorems for θ-ϕ-contraction on b-metric spaces, J. Math. Comput. Sci. 29 (2023), no. 1, 12–27.
[20] L. Wangwe and S. Kumar, Fixed point theorem for s-ϕ-Ψ-F-contraction mappings in ordered partial metric space with an application to integral equation, Nonlinear Stud. 28 (2021), no. 1, 1207–1223.
[21] L. Wangwe and S. Kumar, A common fixed point theorem for generalized F-Kannan Suzuki type mapping in TV S valued cone metric space with applications, J. Math. 2022 (2022), Article ID 6504663.
[22] D. Zheng, Z. Cai, and P. Wang, New fixed point theorems for θ-φ-contraction in complete metric spaces, J. Nonlinear Sci. Appl. 10 (2017), 2662—2670.