[1] A. Abdellahi, F. N. Mohamedade, and G. Bamba, The effectiveness of a hybrid diffie-hellman-RSA-AES model, Int. Conf. Comput. Commun. Inf. (ICCCI) Pub., 2022.
[2] Y. Chen, M. Zhang, X. Li, T. Che, R. Jin, J. Guo, W. Yang, B. An, and X. Nie, Satellite-enabled internet of remote things network transmits field data from the most remote areas of the Tibetan plateau, Sensors 22 (2022), no. 10, 3713.
[3] J. Dıaz, A.V. Ferrari, and S.J.L. Fenner, On-the-fly diffie-hellman for IoT, Int. Conf. Chilean Comput. Sci. Soc. (SCCC), 2019.
[4] J. A. Fraire, O. Iova, and F. Valois, Space-terrestrial integrated internet of things: Challenges and opportunities, IEEE Commun. Mag. 60 (2022), no. 12, 64–70.
[5] A. Goulart, A. Chennamaneni, D. Torre, B. Hur, and F.Y. Al-Aboosi, On wide-area IoT networks, lightweight security and their applications, Practic. Rev. Electron. 11 (2022), no. 4, 1762.
[6] N. Li, Research on Diffie-Hellman key exchange protocol, Int. Conf. Comput. Engin. Technol., 2010.
[7] B. Li, Z. Fei, C. Zhou, and Y. Zhang, Physical layer security in space information networks: A survey, IEEE Internet Things J. 7 (2019), no. 1, 33–52. DOI: 10.1109/jiot.2019.2943900.
[8] V. Miller, Use of elliptic curves in cryptography, Adv. Cryptol. Conf. CRYPTO ’85, Santa Barbara, 1985, pp. 417–426.
[9] M. Mingxuan, Comparison between RSA and ECC, 2nd Int. Seminar Artific. Intell. Network. Inf. Technol. (AINIT), 2021.
[10] M.G. Schraml, R.T. Schwarz, and A. Knopp, Multiuser mimo concept for physical layer security in multibeam satellite systems, IEEE Trans. Inf. Forensics Secur. 16 (2021), no. 4, 1670–1680.
[11] J.R. Shaikh, M. Nenova, G. Iliev, and Z. Valkova-Jarvis, Analysis of standard elliptic curves for the implementation of elliptic curve cryptography in resource-constrained e-commerce applications, IEEE Int. Conf. Microwaves Antennas Commun. Electronic Syst. (COMCAS), 2017.
[12] P. Tedeschi, S. Sciancalepore, and R.D. Pietro, Satellite-based communications security: a survey of threats, solutions, and research challenges, Comput. Networks 216 (2022), no. 4, 109246.
[13] M. Turkanovic, B. Brumen, and M. H¨olbl, A novel user authentication and key agreement scheme for heterogeneous ad hoc wireless sensor networks, based on the Internet of Things notion, Ad Hoc Networks 20 (2014), no 2, 96–112.
[14] E. Vidhya, S. Sivabalan, and R. Rathipriya, Hybrid Key Generation for RSA and ECC, Int. Conf. Commun. Electron. Syst. (ICCES), 2019.
[15] M. Wazid, A. Das, N. Kumar, V. Odelu, G. Reddy, K. Park, and Y. Park, Design of lightweight authentication and key agreement protocol for vehicular ad hoc networks, IEEE Access 5 (2017), no. 2, 14966–14980.
[16] K. Xue, C. Ma, P. Hong, and R. Ding, A temporal credential-based mutual authentication and key agreement scheme for wireless sensor networks, J. Network Comput. Appl. 36 (2013), no. 1, 316–323.
[17] H.L. Yeh, T.H. Chen, P.C. Liu, T.H. Kim, and H.W. Wei, A secured authentication protocol for wireless sensor networks using elliptic curves cryptography, Sensors 11 (2011), no. 5, 4767–4779.
[18] Y. Yan, The overview of elliptic curve cryptography (ECC), J. Phys.: Conf. Ser. 2386 (2022), no 14, 012019.
[19] Y. Zhang, Y. Wang, Y. Hu, Z. Lin, Y. Zhai, L. Wang, Q. Zhao, K. Wen, and L. Kang, Security performance analysis of LEO satellite constellation networks under DDoS Attack, Sensors 22 (2022), no. 19, 7286.