[1] N. Dunford and J.T. Schwartz, Linear Operators: General Theory, Chichester, Wiley, 1988.
[2] M.A. Goberna and N. Kanzi, Optimality conditions in convex multiobjective SIP, Math. Programm. 164(2017), 167–191.
[3] R. Hettich and O. Kortanek, Semi-infinite programming: Theory, methods, and applications, SIAM Rev. 35 (1993), 380–429.
[4] J.B. Hiriart-Urruty and C. Lemarechal, Convex Analysis and Minimization Algorithms. I., Fundamentals, Springer, Berlin, 1993.
[5] N. Kanzi, Karush–Kuhn–Tucker types optimality conditions for non-smooth semi-infinite vector optimization problems, J. Math. Ext. 9 (2015), 45–56.
[6] N. Kanzi, Lagrange multiplier rules for non-differentiable DC generalized semiinfinite programming problems, J. Glob. Optim. 56 (2020), 417–430.
[7] N. Kanzi, J. Shaker Ardekani, and G. Caristi, Optimality, scalarization and duality in linear vector semi-infinite programming, Optimization 67 (2018), 523–536.
[8] N. Kanzi and M. Soleimani-Damaneh, Characterization of the weakly efficient solutions in nonsmooth quasiconvex multiobjective optimization, J. Glob. Optim. 77 (2020), 627–641.
[9] N. Kanzi, Necessary and sufficient conditions for (weakly) efficient of nondifferentiable multi-objective semi-infinite programming, Iran. J. Sci. Technol. Trans. A: Sci. 42 (2017), 1537—1544.
[10] N. Kanzi, Constraint qualifications in semi-infinite systems and their applications in nonsmooth semi-infinite problems with mixed constraints, SIAM J. Optim. 24 (2014), 559-–572.
[11] W. Li, C. Nahak, and I. Singer, Constraint qualifications in semi-infinite systems of convex inequalities, SIAM J. Optim. 11 (2000), 31–52.
[12] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
[13] K.A. Winkler, Characterization of efficient and weakly efficient points in convex vector optimization, SIAM J. Optim. 19 (2008), 756–765.
[14] C. Zalinescu, Convex Analysis in General Vector Spaces, World Scientific, Singapore, 2002.
[15] K.Q. Zhao and X.M. Yang, Characterizations of efficiency in vector optimization with C(T)-valued mappings, Optim. Lett. 9 (2015), 391–401.