[1] K. Backhaus, B. Erichson, S. Gensler, R. Weiber, and T. Weiber, Cluster analysis, Multivariate Anal.: Application-Oriented Introduction, Springer, 2023, pp. 453–532.
[2] R. Bhuyan and S. Borah, A survey of some density based clustering techniques, arXiv preprint arXiv:2306.09256 (2023).
[3] A. Bryant and K. Cios, Rnn-dbscan: A density-based clustering algorithm using reverse nearest neighbor density estimates, IEEE Trans. Knowledge Data Engin. 30 (2017), no. 6, 1109–1121.
[4] A.A. Bushra, D. Kim, Y. Kan, and G. Yi, Autoscan: Automatic detection of dbscan parameters and efficient clustering of data in overlapping density regions, Peer J. Comput. Sci. 10 (2024), e1921.
[5] I. de Moura Ventorim, D. Luchi, A.L. Rodrigues, and F.M. Varejao, Birchscan: A sampling method for applying dbscan to large datasets, Expert Syst. Appl. 184 (2021), 115518.
[6] S. Erich, S. Jorg, E. Martin, K.H. Peter, and X. Xiaowei, Dbscan revisited, revisited: Why and how you should (still) use dbscan, ACM Trans. Database Syst. 42 (2017), no. 3, 1–21.
[7] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, KDD 96 (1996), no. 34, 226–231.
[8] A. Fahim, An extended dbscan clustering algorithm, Int. J. Adv. Comput. Sci. Appl. 13 (2022), no. 3.
[9] Z. Falahiazar, A.R. Bagheri, and M. Reshadi, Determining parameters of dbscan algorithm in dynamic environments automatically using dynamic multi-objective genetic algorithm, J. AI Data Min. 10 (2022), no. 3, 321–332.
[10] X. Huang, T. Ma, C. Liu, and S. Liu, Grit-dbscan: A spatial clustering algorithm for very large databases, Pattern Recog. 142 (2023), 109658.
[11] L. Hubert and P. Arabie, Comparing partitions, J. Class. 2 (1985), no. 1, 193–218.
[12] J.-Hun Kim, J.-H. Choi, Y.-H. Park, C. Kai-Sang Leung, and A. Nasridinov, Knn-sc: Novel spectral clustering algorithm using k-nearest neighbors, IEEE Access 9 (2021), 152616–152627.
[13] O. Kulkarni and A. Burhanpurwala, A survey of advancements in dbscan clustering algorithms for big data, 3rd Int. Conf. Power Electron. IoT Appl. Renew. Energy Control (PARC), IEEE, 2024, pp. 106–111.
[14] B. Ma, C. Yang, A. Li, Y. Chi, and L. Chen, A faster dbscan algorithm based on self-adaptive determination of parameters, Procedia Comput. Sci. 221 (2023), 113–120.
[15] J. Qian, Y. Zhou, X. Han, and Y. Wang, Mdbscan: A multi-density dbscan based on relative density, Neurocom[1]puting 576 (2024): 127329.
[16] J. Ravi and S. Kulkarni, Automatic generation of parameters in density-based spatial clustering., ICTACT J. Soft Comput. 12 (2022), no. 2.
[17] M.A. Sorkhi, E. Akbari, M. Rabbani, and H. Motameni, A dynamic density-based clustering method based on k-nearest neighbor, Knowledge Inf. Syst. 66 (2024), 3005–3031.
[18] A. Strehl and J. Ghosh, Cluster ensembles-A knowledge reuse framework for combining multiple partitions, J. Machine Learn. Res. 3 (2003), 583–617.
[19] P.M. Vaidya, An o(n logn) algorithm for the all-nearest-neighbors problem, Discrete Comput. Geom. 4 (1989), no. 2, 101–115.
[20] Y. Wang, J. Qian, M. Hassan, X. Zhang, T. Zhang, C. Yang, X. Zhou, and F. Jia, Density peak clustering algorithms: A review on the decade 2014–2023, Expert Syst. Appl. 238 (2023), 121860.
[21] Z. Wang, Z. Ye, Y. Du, Y. Mao, Y. Liu, Z. Wu, and J. Wang, Amd-dbscan: An adaptive multi-density dbscan for datasets of extremely variable density, IEEE 9th Int. Conf. Data Sci. Adv. Anal., IEEE, 2022, pp. 1–10.
[22] H. Yin, A. Aryani, S. Petrie, A. Nambissan, A. Astudillo, and S. Cao, A rapid review of clustering algorithms, arXiv preprint arXiv:2401.07389 (2024).
[23] X. Zhang and S. Zhou, Woa-dbscan: Application of whale optimization algorithm in dbscan parameter adaption, IEEE Access 11 (2023), 91861–91878.