[1] B. Almadani, A. Beg, and A. Mahmoud, DSF: A distributed SDN control plane framework for the east/west interface, IEEE Access 9 (2021), 26735–26754.
[2] X. Cai, Y. Xiao, M. Li, H. Hu, H. Ishibuchi, and X. Li, A grid-based inverted generational distance for multi/many-objective optimization, IEEE Trans. Evolut. Comput. 25 (2020), no. 1, 21–34.
[3] S. Dou, L. Qi, C. Yao, and Z. Guo, Exploring the impact of critical programmability on controller placement for software-defined wide area networks, IEEE/ACM Trans. Network. 31 (2023), no. 6, 2575–2588.
[4] S. Favuzza, M.G. Ippolito, and E.R. Sanseverino, Crowded comparison operators for constraints handling in NSGA-II for optimal design of the compensation system in electrical distribution networks, Adv. Engin. Inf. 20 (2006), no. 2, 201–211.
[5] D. Hock, S. Gebert, M. Hartmann, T. Zinner, and P. Tran-Gia, POCO-framework for Pareto-optimal resilient controller placement in SDN-based core networks, IEEE Network Oper. Manag. Symp., 2014, pp. 1–2.
[6] D. Hock, M. Hartmann, S. Gebert, T. Zinner, and P. Tran-Gia, POCO-PLC: Enabling dynamic Pareto-optimal resilient controller placement in SDN networks, IEEE Conf. Comput. Commun. Workshops (INFOCOM WKSHPS), IEEE, 2014, pp. 115–116.
[7] A.A. Ibrahim, F. Hashim, A. Sali, N.K. Noordin, K. Navaie, and S.M. Fadul, Reliability-aware swarm based multi-objective optimization for controller placement in distributed SDN architecture, Digital Commun. Networks 10 (2024), no. 5, 1245–1257.
[8] H. Ishibuchi, H. Masuda, Y. Tanigaki, and Y. Nojima, Modified distance calculation in generational distance and inverted generational distance, Evolut. Multi-Criterion Optim.: 8th Int. Conf., EMO 2015, Guimaraes, Portugal, March 29–April 1, 2015, Springer International Publishing, Proc. Part II 8, 2015, pp. 110–125.
[9] B. Isong, R.R.S. Molose, A.M. Abu-Mahfouz, and N. Dladlu, Comprehensive review of SDN controller placement strategies. IEEE Access 8 (2020), 170070–170092.
[10] A. Jalili and M. Keshtgari, A new reliable controller placement model for software-defined WANs, J. AI Data Min. 8 (2020), no. 2, 269–277.
[11] A. Jalili, M. Keshtgari, and R. Akbari, A new framework for reliable control placement in software-defined networks based on multi-criteria clustering approach, Soft Comput. 24 (2020), no. 4, 2897–2916.
[12] R. Jeya, G.R. Venkatakrishnan, and V. Nagarajan, Placing controllers using latency metrics in a smart grid implementing software-defined networking architecture, Adv. Sci. Technol. 124 (2023), 828–835.
[13] K. Kaur, U. Singh, and R. Salgotra, An enhanced moth flame optimization, Neural Comput. Appl. 32 (2020), 2315–2349.
[14] S. Knight, H.X. Nguyen, N. Falkner, R. Bowden, and M. Roughan, The internet topology zoo, IEEE J. Selected Areas Commun. 29 (2011), no. 9, 1765–1775.
[15] Y. Li, S. Guan, C. Zhang, and W. Sun, Parameter optimization model of heuristic algorithms for controller placement problem in large-scale SDN, IEEE Access 8 (2020), 151668–151680.
[16] J. Ma, J. Chen, L. Dong, and X. Jiang, (2023). Research on placement of distributed SDN multiple controllers based on IAVOA, Cluster Comput. 27 (2024), no. 1, 913–930.
[17] Y. Maleh, Y. Qasmaoui, K. El Gholami, Y. Sadqi, and S. Mounir, A comprehensive survey on SDN security: Threats, mitigations, and future directions, J. Rel. Intel. Envir. 9 (2023), no. 2, 201–239.
[18] A. Naseri, M. Ahmadi, and L. PourKarimi, Placement of SDN controllers based on network setup cost and latency of control packets, Comput. Commun. 208 (2023), 15–28.
[19] Y.S.D. Phaneendra, U. Prabu, and S. Yasmine, A study on multi-controller placement problem (MCPP) in software-defined networks, Int. Conf. Sustain. Comput. Data Commun. Syst., IEEE, 2023, pp. 1454–1458.
[20] M.G. Resendel and C.C. Ribeiro, GRASP with path-relinking: Recent advances and applications, Metaheuristics: Progress as Real Problem Solvers, Springer, 2005, pp. 29–63.
[21] M. Shehab, L. Abualigah, H. Al Hamad, H. Alabool, M. Alshinwan, and A.M. Khasawneh, Moth-flame optimization algorithm: Variants and applications, Neural Comput. Appl. 32 (2020), 9859–9884.
[22] M. Shehab, H. Alshawabkah, L. Abualigah, and N. AL-Madi, Enhanced a hybrid moth-flame optimization algo[1]rithm using new selection schemes, Engin. Comput. 37 (2021), 2931–2956.
[23] T. Singh, N. Saxena, M. Khurana, D. Singh, M. Abdalla, and H. Alshazly, Data clustering using moth-flame optimization algorithm, Sensors 21 (2021), no. 12, 4086.
[24] X. Su, C. Zhang, C. Chen, L. Fang, and W. Ji, Dynamic configuration method of flexible workshop resources based on IICA-NS algorithm, Processes 10 (2022), no. 11, 2394.
[25] C. Xu, C. Xu, B. Li, S. Li, and T. Li, Load-aware dynamic controller placement based on deep reinforcement learning in SDN-enabled mobile cloud-edge computing networks, Comput. Networks 234 (2023), 109900.