[1] S. Abbas, M. Benchohra, and G.M. N’Guerekata, Topics in Fractional Differential Equations, vol. 27. Springer, New York, 2012.
[2] G. Anastassiou, Advances on Fractional Inequalities, Springer, New York, 2011.
[3] A. Arikoglu and I. Ozkol, Solution of fractional integro-differential equations by using fractional differential trans[1]form method, Chaos Solitons Fractals 40 (2009), 521–529.
[4] D. Baleanu, Z. Guven¸c, and J. Machado, New Trends in Nanotechnology and Fractional Calculus Applications, Springer, New York, 2000.
[5] D. Baleanu, S. Etemad, and S. Rezapour, A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions, Bound. Value Probl. 2020 (2020), 64.
[6] D. Baleanu, A. Jajarmi, H. Mohammadi, and S. Rezapour, A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative, Chaos Solitons Fractals 134 (2020), 109705.
[7] D. Baleanu, S. Zahra Nazemi, and S. Rezapour, Existence and uniqueness of solutions for multi-term nonlinear fractional integro-differential equations, Adv. Differ. Equ. 368 (2013).
[8] H. Brezis, Functional Analysis. Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011.
[9] L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci. 54 (2003), 3413–3442.
[10] K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, Springer, New York, 2010.
[11] R.A.C. Ferreira, Lyapunov-type inequalities for some sequential fractional boundary value problems, Adv. Dyn. Syst. Appl. 11 (2016), no. 1, 33–43.
[12] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
[13] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Boston, 2006.
[14] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, 204th ed. Elsevier, Amsterdam, 2006.
[15] V. Lakshmikantham, S. Leela, and D.J. Vasundhara, Theory of Fractional Dynamic Systems, Cambridge Academic Publishers, Cambridge, 2009.
[16] Y. Luchko and R. Gorenflo, An operational method for solving fractional differential equations with the Caputo derivatives, Acta Math. Viet. 24 (1999), no. 2, 207–233.
[17] M. Mohan Raja, V. Vijaykumar, and R. Udhaykumar, Results on the existence and controllability of fractional integro-differential system of order 1 < r < 2 via measure of noncompactness, Chaos Solitons Fractals 139 (2020), 1–13.
[18] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
[19] C. Ravichandran, K. Logeswari, and F. Jarad, New results on existence in the framework of Atangana-Baleanu derivative for fractional integro-differential equations, Chaos Solitons Fractals 125 (2019), 194–200.
[20] S. Samko, A. Kilbas, and O. Marichev, Fractional Integrals and Derivatives, Gordon and Breach, Yverdon, 1993.
[21] D.R. Smart, Fixed Point Theorems, Cambridge University Press, Cambridge, 1980.
[22] V.E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Higher Education Press, Heidelberg, 2010.
[23] S. Xinwei and L. Landong, Existence of solution for boundary value problem of nonlinear fractional differential equation, Appl. Math. J. Chin. Univ. Ser. B 22 (2007), no. 3, 291–298.
[24] E. Zeidler, Nonlinear Functional Analysis and its Applications I: Fixed-Point Theorems, Springer-Verlag, New York, 1993.
[25] X. Su and S. Zhang, Solutions to boundary value problems for nonlinear differential equations of fractional order, Electron. J. Differ. Equ. 26 (2009)