[1] A. M. Aminpour, S. Khorshidvandpour, and M. Mousavi, Some results in asymmetric metric spaces, Math. Eterna 2 (2012), no. 6, 533–540.
[2] A. H. Ansari, A. Tomar, and M. Joshi, A survey of C-class and pair upper-class functions in fixed point theory, Int. J. Nonlinear Anal. Appl. 13 (2022), 1879–1896.
[3] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math. 3 (1922), 133–181.
[4] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen 57 (2000), 31–37.
[5] R. George, S. Radenovic, K. P. Reshma, and S. Shukla, Rectangular b-metric space and contraction principles, J. Nonlinear Sci. Appl. 8 (2015), 1005–1013.
[6] M. Jleli, E. Karapinar, and B. Samet, Further generalizations of the Banach contraction principle, J. Inequal. Appl. 2014 (2014), Paper No. 439.
[7] M. Jlil and B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl. 2014 (2014), Paper No. 38.
[8] R. Kannan, Some results on fixed points-II, Amer. Math. Monthly 76 (1969), 405–408.
[9] A. Kari, M. Rossafi, E. Marhrani, and M. Aamri, Fixed-point theorems for θ−ϕ-contruction in generalized asymmetric metric spaces, Int. J. Math. Math. Sci. 2020 (2020), Article ID 8867020.
[10] A. Kari, M. Roesafi, E. Marhrani, and M. Aamri, θ−ϕ-contraction on (α, η)-complete rectangular b-metric spaces, Int. J. Math. Math. Sci. 2020 (2020), Article ID 5689458.
[11] A. Kari, M. Rossafi, E. Marhrani, and M. Aamri, New fixed point theorems for θ−ϕ-contraction on complete rectangular b-metric spaces, Abstr. Appl. Anal. 2020 (2020), Article ID 8833214.
[12] A. Kari, M. Rossafi, E. Marhrani, and M. Aamri, Fixed-point theorem for nonlinear F-contraction via w-distance, Adv. Math. Phys. 2020 (2020), Article ID 6617517.
[13] A. Kari, M. Rossafi, E. Marhrani, and M. Aamri, Fixed point theorems for generalized θ − ϕ-expansive mapping in rectangular metric spaces, Abstr. Appl. Anal. 2021 (2021), Article ID 6642723.
[14] M. Kazemi, On existence of solutions for some functional integral equations in Banach algebra by fixed point theorem, Int. J. Nonlinear Anal. Appl. 13 (2022), 451–466.
[15] W.A. Kirk and N. Shahzad, Generalized metrics and Caristi’s theorem, Fixed Point Theory Appl. 2013 (2013), Paper No. 129.
[16] A. Mennucci, On asymmetric distances, Technical Report, Scuola Normale Superiore, Pisa, 2004.
[17] H. Piri and P. Kumam, Some fixed point theorems concerning F-contraction in complete metric spaces, Fixed Point Theory Appl. 2014 (2014), Paper No. 210.
[18] H. Piri, S. Rahrovi, H. Marasi, and P. Kumam, F-contraction on asymmetric metric spaces, J. Math. Comput. Sci. 17 (2017), 32–40.
[19] H. Piri, S. Rahrovi, and R. Zarghami, Some fixed point theorems on generalized asymmetric metric spaces, Asian[1]Eur. J. Math. 14 (2021), no. 7, 2150109.
[20] S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull. 14 (1971), no. 2, 121–124.
[21] I.L. Reilly, P.V. Subrahmanyam, and M.K. Vamanamurthy, Cauchy sequences in quasipseudometric spaces, Monatsh. Math. 93 (1982), 127–140.
[22] J.R. Roshan, V. Parvaneh, Z. Kadelburg, and N. Hussain, New fixed point results in b-rectangular metric spaces, Nonlinear Anal.: Model. Control 21 (2016), no. 5, 614-634.
[23] B. Samet, Discussion on a fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen 76 (2010), 493–494.
[24] W.A. Wilson, On quasi-metric spaces, Amer. J. Math. 53 (1931), 675—684.
[25] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. 2012 (2012), Paper No. 94.
[26] D. Wardowski, Solving existence problems via F-contractions, Proc. Amer. Math. Soc. 146 (2018), 1585–1598.
[27] D. Wardowski and N. Van Dung, Fixed points of F-weak contractions on complete metric spaces, Demonstr. Math. 47 (2014), 146-–155.