On a class of Schrodinger-Kirchhoff-Poisson systems

Document Type : Research Paper

Authors

1 Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran

2 Department of Mathematics, Faculty of Basic Science, Babol Noshirvani University of Technology, Babol, Iran

10.22075/ijnaa.2024.35087.5241

Abstract

This article discusses the existence and multiplicity of solutions for ‎‎‎the following‎ ‎Schrodinger-Kirchhoff-Poisson ‎system:‎
{(a+bR3|u|2)Δu+λϕu=m(x)|u|q2u+f(x,u),xΩ,Δϕ=u2,   xΩ,
‎where ‎Ω ‎is a‎ ‎bounded ‎smooth ‎domain ‎of‎ ‎‎R3,‎ a0‎ ,‎b>0 and λ>0 is a ‎parameter,‎‎ ‎1<q<2 and f(x,u) is linearly bounded in u at infinity‎. ‎Under some suitable‎ ‎assumptions on m and f‎,‎ we prove the existence and multiplicity of solutions via variational methods.‎

Keywords

[1] C.O. Alves and M.A.S. Souto, Existence of least energy nodal solution for a Schrodinger- Poisson system in bounded domains, Z. Angew. Math. Phys. 65 (2014), 1153–1166.
[2] C.O. Alves and G.M. Figueiredo, Existence of positive solution for a planar Schrodinger-Poisson system with exponential growth, J. Math. Phys. 60 (2019), no. 1.
[3] G. Anelo, A uniqueness result for a nonlocal equation of Kirchhoff equation type and some related open problem, J. Math. Anal. Appl. 373 (2011), 248–251.
[4] G. Anelo, On a perturbed Dirichlet problem for a nonlocal differential equation of Kirchhoff type, Bound. Value Prob. 2011 (2011), 1-10.
[5] A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrodinger-Poisson problem, Contemp. Math. 10 (2008), 391–404.
[6] A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrodinger-Maxwell equations, J. Math. Anal. Appl. 345 (2008), 90–108.
[7] C.J. Batkam, Multiple sign-changing solutions to a class of Kirchhoff type problems, Electronic J. Differ. Equ. 2016 (2016).
[8] C.J. Batkam and J.R.S. Junior, Schrodinger-Kirchhoff-Poisson type systems, Commun. Pure Appl. Anal. 15 (2016), 429–444.
[9] V. Benci and D. Fortunato, An eigenvalue problem for the Schrodinger-Maxwell equations, Meth. Nonlinear Anal. 11 (1998), 283–293.
[10] G. Cerami and G. Vaira, Positive solutions for some non-autonomous Schrodinger-Poisson systems, J. Differ. Equ. 248 (2010), 521–543.
[11] G.M. Coclite, A multiplicity result for the nonlinear Schrodinger-Maxwell equations, Commun. Appl. Anal. 7 (2003), 417–423.
[12] L. Cui and A. Mao, Existence and asymptotic behavior of positive solutions to some logarithmic Schrodinger–Poisson system, Z. Angew. Math. Phys. 75 (2024), no. 1, 30.
[13] T. D’Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrodinger-Maxwell equa[1]tions, Proc. Roy. Soc. Edinburgh. Sect. A 134 (2004), 893–906.
[14] X. Feng, H. Liu, and Z. Zhang, Normalized solutions for Kirchhoff type equations with combined nonlinearities: The Sobolev critical case, Discrete Contin. Dyn. Syst. 43 (2023), no. 8, 2935–2972.
[15] G.M. Figueiredo, N. Ikoma, and J.R. Santos Junior, Existence and concentration result for the Kirchhoff type equations with general nonlinearities, Arch. Ration. Mech. Anal. 213 (2014), 931–979.
[16] G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.
[17] D. Ruiz, The Schrodinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal. 237 (2006), 655–674.
[18] D. Ruiz and G. Siciliano, A note on the Schrodinger-Poisson-Slater equation on bounded domains, Adv. Nonlinear Stud. 8 (2008), 179–190.
[19] M. Soluki, G.A. Afrouzi, and S.H. Rasouli, Existence and multiplicity of non-trivial solutions for fractional Schr¨odinger-Poisson systems with a combined nonlinearity, J. Ellip. Parab. Equ. 10 (2024), 211-224.
[20] M. Soluki, S.H. Rasouli, and G.A. Afrouzi, On a class of nonlinear fractional Schrodinger-Poisson systems, Int. J. Nonlinear Anal. Appl. 10 (2019), 123–132.
[21] M. Soluki, S.H. Rasouli, and G.A. Afrouzi, Solutions of a Schr¨odinger-Kirchhoff-Poisson system with concave-convex nonlinearities, J. Ellip. Parab. Equ. 9 (2023), no. 2, 1233–1244.
[22] M. Soluki, G.A. Afrouzi, and S.H. Rasouli, Existence of non-trivial solutions to a class of fractional p-Laplacian equations of Schrodinger-type with a combined nonlinearity, J. Anal. 32 (2024), no. 5, 2847–2856.
[23] L. Shao and H. Chen, Existence of solutions for the Schrodinger-Kirchhoff-Poisson systems with a critical non[1]linearity, Bound. Value Prob. 210 (2016), 1–11.
[24] M. Sun, J. Su, and L. Zhao, Solutions of a Schrodinger-Poisson system with combined nonlinearities, J. Math. Anal. Appl. 442 (2016), 385–403.
[25] Z. Q. Wang, Nonlinear boundary value problems with concave nonlinearities near the origin, Nonlinear Differ. Equ. Appl. 8 (2001), 15–33.
[26] F. Zhao and L. Zhao, Positive solutions for Schrodinger-Poisson equations with a critical exponent, Nonlinear Anal. 70 (2009), 2150–2164.
[27] J. Zhang, H. Liu, and J. Zuo, High energy solutions of general Kirchhoff type equations without the Ambrosetti-Rabinowitz type condition, Adv. Nonlinear Anal. 12 (2023), no. 1.

Articles in Press, Corrected Proof
Available Online from 05 April 2025
  • Receive Date: 14 August 2024
  • Accept Date: 18 September 2024