[1] H.E. Bell, Near rings in wich each element is a power of itself, Bull. Aust. Math. Soc. 2 (1973), no. 2, 363–368.
[2] G.F. Birkenmeier, Y. Kara, and A. Tercan, π-Baer rings, J. Alg. Appl. 16 (2018), no. 11, 1–19.
[3] G.F. Birkenmeier, J.Y. Kim, and J.K. Park, A characterization of minimal prime ideals, Glasgow Math. J. 40 (1998), 223–236.
[4] G.F. Birkenmeier, J.Y. Kim, and J.K. Park, A sheaf representation of quasi-Baer rings, J. Pure Appl. Alg. 146 (2000), 209–223.
[5] G.F. Birkenmeier, J.Y. Kim, and J.K. Park, On polynomial extensions of principally quasi-Baer rings, Kyungpook Math. J. 40 (2000), 247–253.
[6] G.F. Birkenmeier, J.Y. Kim, and J.K. Park, Prime ideals of principally quasi-Baer rings, Acta Math. Hung. 98 (2003), no. 3, 217–225.
[7] G.F. Birkenmeier, J.Y. Kim, and J.K. Park, Principally quasi-Baer rings, Commun. Alg. 29 (2001), no. 2, 639–660.
[8] G.F. Birkenmeier, A. Tercann, and C.C. Yucel, Projection invariant extending rings, J. Alg. Appl. 15 (2016), no. 6, 1650121, 11 pp.
[9] W.E. Clark, Twisted matrix units semigroup algebras, Duke Math. J. 34 (1997), 417–424.
[10] H.E. Heathely and R.P. Tucci, Central and semicentral idempotents, Kyungpook Math. J. 40 (2000), 255–258.
[11] C. Huh, H.K. Kim, and Y. Lee, p.p rings and generalized p.p rings, J. Pure Appl. Alg. 167 (2002), 37–52.
[12] I. Kaplanski, Rings of Operators, Benjamin, New York. 1968.
[13] T.Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Mathematics, Springer, New York, 2000.
[14] A. Majidinya and A. Moussavi, Weakly principally quasi-Baer rings, J. Alg. Appl. 15 (2016), no. 1, 1–19.
[15] A. Moussavi, H. Haj Seyyed Javadi, and E. Hashemi, Generalized quasi-Baer rings, Commun. Alg. 33 (2005), 2115–2129.
[16] A. Shahidikia, H. Haj Seyyed Javadi, and A. Moussavi, Generalized π-Baer rings, Turk. J. Math. 44 (2020), 2021–2040.