Mazur-Ulam theorem in intuitionistic fuzzy normed spaces

Document Type : Research Paper

Authors

1 Department of Mathematics, Payame Noor University, P.O.BOX 19395-3697, Tehran, Iran

2 Javanroud Faculty of Management and Accounting, Razi University, Kermanshah, Iran

Abstract

 In this paper,  introducing the notion of intuitionistic strictly convex sets, and using functions that preserve equality of intuitionistic fuzzy distance, a new generalization of Mazur-Ulam theorem in intuitionistic fuzzy normed spaces is presented. Moreover, intuitionistic fuzzy isometries, segment-preserving functions, and norm-additive maps are used to study the prerequisites needed to prove the main theorem.

Keywords

[1] C. Alaca, D. Turkoglu, and C. Yildiz, Fixed points in intuitionistic fuzzy metric spaces, Chaos Solitons Fractals 29 (2006), no. 5, 1073–1078.
[2] K.T. Atanassov, On Intuitionistic Fuzzy Sets Theory, Vol. 283, Springer, 2012.
[3] K.T. Atanassov, More on intuitionistic fuzzy sets, Fuzzy Sets Syst. 33 (1989), no. 1, 37–45.
[4] K.T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst. 20 (1986), 87–96.
[5] K.T. Atanassov, Intuitionistic fuzzy sets, Studia Math. 45 (1983), no. 1, 43–48.
[6] J.A. Baker, Isometries in normed spaces, Amer. Math. Monthly 78 (1971), no. 6, 655–658.
[7] D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets Syst. 88 (1997), no. 1, 81–89.
[8] M. Eshaghi Gordji and N. Ghobadipour, On the Mazur-Ulam theorem in fuzzy normed spaces, arXiv preprint arXiv:0905.2166 (2009).
[9] J.J. Font, J. Galindo, S. Macario, and M. Sanchis, Mazur-Ulam type theorems for fuzzy normed spaces, J. Nonlinear Sci. Appl. 10 (2017), no. 8, 4499–4506.
[10] J.J. Font, J. Galindo, S. Macario, and M. Sanchis, A generalized Mazur-Ulam theorem for fuzzy normed spaces, Abstr. Appl. Anal. 2014 (2014), no. 1, 624920.
[11] R. Hu, On the maps preserving the equality of distance, J. Math. Anal. Appl. 343 (2008), no.2, 1161–1165.
[12] P. Isaac and K. Maya, On the intuitionistic normed linear space (Rn, A), Fuzzy Math. Syst. 2 (2012), 95–110.
[13] D. Kang, H. Koh, and I.G. Cho, On the Mazur–Ulam theorem in non-Archimedean fuzzy normed spaces, Appl. Math. Lett. 25 (2012), no. 3, 301–304.
[14] I. Kramosil and J. Michalek., Fuzzy metrics and statistical metric spaces, Kybernetika 11 (1975), no. 5, 336–344.
[15] S. Mazur and S. Ulam, Sur les transformations isom´etriques d’espaces vectoriels norm´es, CR Acad. Sci. Paris 194 (1932), no. 946–948.
[16] J.H. Park, Intuitionistic fuzzy metric spaces, Chaos Solitons Fractals 22 (2004), no. 5, 1039–1046.
[17] C. Park and C. Alaca., Mazur-Ulam theorem under weaker conditions in the framework of 2-fuzzy 2-normed linear spaces, J. Inequal. Appl. 2013 (2013), no. 1, 1–9.
[18] A. Pourmoslemi and K. Nourouzi, Mazur-Ulam theorem in probabilistic normed groups, Int. J. Nonlinear Anal. Appl. 8 (2017), no. 2, 327–333.
[19] R. Saadati and J.H. Park., On the intuitionistic fuzzy topological spaces, Chaos Solitons Fractals 27 (2006), no. 2, 331–344.
[20] T.K. Samanta and I.H. Jebril, Finite dimensional intuitionistic fuzzy normed linear space, Int. J. Open Prob. Compt. Math. 2 (2009), no. 4, 574–591.
[21] W. Shatanawi and M. Postolache, Mazur-Ulam theorem for probabilistic 2-normed spaces, J. Nonlinear Sci. Appl. 8 (2015), no. 6, 1228–1233.
[22] E. Szmidt and J. Kacprzyk, Distances between intuitionistic fuzzy sets, Fuzzy Sets Syst. 114 (2000), no. 3, 505–518.
[23] J. Vaisala, A proof of the Mazur-Ulam theorem, Amer. Math. Monthly 110 (2003), no. 7, 633–635.
[24] A. Vogt, Maps which preserve equality of distance, Studia Math. 45 (1973), no. 1, 43–48.
[25] A.L. Zadeh, Fuzzy sets, Inf. Control 8 (1965), no. 3, 338–353.

Articles in Press, Corrected Proof
Available Online from 13 April 2025
  • Receive Date: 12 May 2024
  • Revise Date: 05 August 2024
  • Accept Date: 04 September 2024