[1] K.S. Aboodh and A. Ahmed, On the application of homotopy analysis method to fractional differential equations, J. Faculty Sci. Technol. 7 (2020), 1–18.
[2] I. Abu Irwaq, M. Alquran, M. Ali, I. Jaradat, and M.S.M. Noorani, Attractive new fractional-integer power series method for solving singular perturbed differential equations involving mixed fractional and integer derivatives, Results Phys. 20 (2021), 103780.
[3] B. Acay, R. Ozarslan, and E. Bas, Fractional physical models based on falling body problem, AIMS Math. 5 (2020), 2608–2628.
[4] G. Adomian, A review of the decomposition method in applied mathematics, J. Math. Anal. Appl. 135 (1988), 501–544.
[5] G. Adomian, A review of the decomposition method and some recent results for nonlinear equations, Comput. Math. Appl. 21 (1991), 101–127.
[6] A. Ahmadian, S. Salahshour, and M. Salimi, A robust numerical approximation of advection diffusion equations with nonsingular kernel derivative, Phys. Scripta 96 (2021), no. 12, Article ID 124015.
[7] A. Ahmed, Laplace transform method for logistic growth in a population and predator models with fractional order, Open J. Math. Sci. 7 (2023), 239–245.
[8] S. Ahmad, K. Shah, T. Abdeljawad, and B. Abdalla, On the approximation of fractal fractional differential equations using numerical inverse Laplace transform methods, CMES 135 (2023), no. 3.
[9] M. Alquran, F. Yousef, F. Alquran, T.A. Sulaiman, and Y.A. Dualwave, Solutions for the quadratic-cubic conformable-Caputo time-fractional Klein-Fock-Gordon equation, Math. Comput. Simul. 185 (2021), 62–76.
[10] S. Alshammari, M. Al-Smadi, M. Al Shammari, I. Hashim, and M.A. Alias, Advanced analytical treatment of fractional logistic equations based on residual error functions, Int. J. Differ. Equ. 2019 (2019), Article ID 7609879, 1–11.
[11] I. Area, K.A. Lazopoulos, and J.J. Nieto, Γ−fractional logistic equation, Prog. Fract. Differ. Appl. 9 (2023), 345–350.
[12] I. Area and J.J. Nieto, Fractional-order logistic differential equation with Mittag–Leffler type kernel, Fractal Fractional 5 (2021), no. 4, 273.
[13] I. Area and J.J. Nieto, Power series solution of the fractional logistic equation, Physica A 573 (2021), 125947.
[14] A. Atangana and A. Akgul, On solutions of fractal fractional differential equations, Discrete Continuous Dyn. Syst. Ser. S 14 (2021), no. 10, 3441–3457.
[15] A. Atangana and D. Baleanu, New fractional derivatives with non-local and nonsingular kernel: Theory and application to heat transfer model. Therm. Sci. 20 (2016), 763–769.
[16] A. Atangana, E. Bonyah, and A.A. Elsadany, A fractional order optimal 4D chaotic financial model with Mittag-Leffler law, Chinese J. Phys. 65 (2020), 38–53.
[17] N. Attia, A. Akgul, D. Seba, and A. Nour, On solutions of fractional logistic differential equations, Progr. Fract. Differ. Appl. 9 (2023), 351–362.
[18] C. Balzotti, M. D’Ovidio, and P. Loreti, Fractional SIS epidemic models, Fractal Fractional 4 (2020), 18 pages.
[19] S. Bhalekar and V. Daftardar-Gejji, Solving fractional-order logistic equation using a new iterative method, Int. J. Diff. Equ. 2012 (2012), Article ID 975829, 12 pages.
[20] F. Brauer, C. Castillo-Chavez, and Z. Feng, Mathematical Models in Epidemiology, Springer-Verlag, New York, 2019.
[21] M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fractional Diff. Appl. 1 (2015), no. 2, 73–85.
[22] V. Daftardar-Gejji and H. Jafari, An iterative method for solving nonlinear functional equations, J. Math. Anal. Appl. 316 2006, 753–763.
[23] L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. 54 (2003), 3413–3442.
[24] K. Diethelm, N. Ford, and A. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn. 29 (2002), 3–22.
[25] M. D’Ovidio and P. Loreti, Solutions of fractional logistic equations by Euler’s numbers, Physical A 506 (2018), 1081–1092.
[26] J.D. do Nascimento, R.L.C. Damasceno, G.L. de Oliveira, and R.V. Ramos, Quantum-chaotic key distribution in optical networks: From secrecy to implementation with logistic map, Quantum Inf. Process. 17 (2018), 329.
[27] V.P. Dubey, S. Dubey, D. Kumar, and J. Singh, Computational study of fractional model of atmospheric dynamics of carbon dioxide gas, Chaos Solitons Fractals 142 (2021), 279–312.
[28] V.P. Dubey, D. Kumar, and S. Dubey, A modified computational scheme and convergence for fractional order hepatitis E virus model, Advanced Numerical Methods for Differential Equations, CRC Press, 2021, pp. 279–312.
[29] V.P. Dubey, J. Singh, A.M. Alshehri, S. Dubey, and D. Kumar, Numerical investigation of fractional model of phytoplankton-toxic Phytoplankton-Zooplankton system with convergence analysis, Int. J. Biomath. 15 (2022), no. 4, 2250006.
[30] A.M.A. El-Sayed, A.E.M. El-Mesiry, H.A.A. and El-Saka, on the fractional-order logistic equations, Appl. Math. Lett. 20 2007 817-823.
[31] J.H. He, A new approach to nonlinear partial differential equations, Commun. Nonlinear Sci. Numer. Simul. 2 (1997), 203–205.
[32] J.H. He, Homotopy perturbation method: A new nonlinear analytical technique. Appl. Math. Comput. 135 (2003), 73–79.
[33] M. Ichise, Y. Nagayanagi, and T. Kojima, An analog simulation of non-integer order transfer functions analysis of electrode process, J. Electroanal. Chem. Interfacial Electrochem. 33 (1971), 253–265.
[34] H.K. Jassim and M. Abdulshareef Hussein, A new approach for solving nonlinear fractional ordinary differential equations, Mathematics. 11 (2023), no. 7, 1565.
[35] R. Kamal, Kamran, G. Rahmat, A. Ahmadian, N.I. Arshad, and S. Salahshour, Approximation of linear one dimensional partial differential equations including fractional derivative with non-singular kernel, Adv. Diff. Equ. 1 (2021), 317—415.
[36] Kamran, A. Ali, and J.F. Gomez-Aguilar, A transform based local RBF method for 2D linear PDE with Caputo-Fabrizio derivative, Comptes Rendus Math. 358 (2020), no. 7, 831–842.
[37] S. Kazem, Exact solution of some linear fractional differential equations by Laplace transform, Int. J. Nonlinear Sci. 16 (2013), no. 1, 3–11.
[38] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204, The organization, Elsevier, Amsterdam, Netherlands, 2006.
[39] I. Koca, Modelling the spread of Ebola virus with Atangana Baleanu fractional operators, Eur. Phys. J. Plus 133 (2018), 100–111.
[40] R.C. Koeller, Applications of fractional calculus to the theory of viscoelasticity, J. Appl. Mech. 51 (1984), 299–307.
[41] M. Laoubi, Z. Odibat, and B. Maayah, Effective optimized decomposition algorithms for solving nonlinear fractional differential equations, J. Comput. Nonlinear Dyn. 18 (2023), no. 2, 021001.
[42] S.J. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, Chapman & Hall/CRC Press: Boca Raton, FL, USA, 2003.
[43] F. Liu, V. Anh, and I. Turner, Numerical solution of the space fractional Fokker-Planck equation, J. Comput. Appl. Math. 166 (2004), 209–219.
[44] J. Lu and G. Chen, A note on the fractional-order Chen system, Chaos Solitons Fractals 27 (2006), no. 3, 685–688.
[45] B. Maayah, S. Bushnaq, and A. Moussaoui, Numerical solution of fractional order SIR model of dengue fever disease via Laplace optimized decomposition method, J. Math. Comput. Sci. 32 (2024), 86–93.
[46] J.J. Nieto, Solution of a fractional logistic ordinary differential equation, Appl. Math. Lett. 123 (2022), 107568.
[47] Z. Odibat, An Optimized decomposition method for nonlinear ordinary and partial differential equations, Phys. A 541 (2020), 13 pages.
[48] Z. Odibat, A universal predictor–corrector algorithm for numerical simulation of generalized fractional differential equations, Nonlinear Dyn. 105 (2021), no. 3, 2363–2374.
[49] Z. Odibat, The optimized decomposition method for a reliable treatment of IVPs for second order differential equations, Phys. Scr. 96 (2021).
[50] E. Pelinovsky, A. Kurkin, O. Kurkina, M. Kokoulina, and A. Epifanova, Logistic equation and COVID-19, Chaos Solitons Fractals 140 (2020), 110241.
[51] X. Qiang, Kamran, A. Mahboob, and Y.M. Chu, Numerical approximation of fractional-order Volterra integrodifferential equation, J. Funct. Spaces 2020 (2020), Article ID 8875792, 12 pages.
[52] D. Rani and V. Mishra, Modification of Laplace Adomian decomposition method for solving nonlinear Volterra integral and integro-differential equations based on Newton Raphson formula, Eur. J. Pure Appl. Math. 11 (2018), 202–214.
[53] T. Saito and K. Shigemoto, A logistic curve in the SIR model and its application to deaths by COVID-19 in Japan, Eur. J. Appl. Sci. 10 (2022), no. 5.
[54] K. Shah, T. Abdeljawad, F. Jarad, and Q. Al-Mdallal, On nonlinear conformable fractional order dynamical system via differential transform method, CMES 136 (2023), no. 2, 1457–1472.
[55] H.H. Sun, A.A. Abdelwahad, and B. Onaral, Linear approximation of transfer function with a pole of fractional order, IEEE Trans. Autom. Control. 29 (1984), 441–444.
[56] H.R. Thieme, Mathematics in Population Biology, Princeton Series in Theoretical and Computational Biology, Princeton University Press, 2003.
[57] V. Tarasov, Exact solutions of Bernoulli and logistic fractional differential equations with power law confidents, Mathematics 8 (2020), no. 12, 2231.
[58] V.V. Tarasova and V.E. Tarasov, Logistic map with memory from economic model, Chaos Solitons Fractals 95 (2017), 84–91.
[59] C.A. Valentim Jr, J.A. Oliveira, S.A. Rabi, and N.A. David, Can fractional calculus help improve tumor growth models?, J. Comput. Appl. Math. 379 (2020), 112964.
[60] D. Vivek, K. Kanagarajan, and S. Harikrishnan, Numerical solution of fractional-order logistic equations by fractional Euler’s method, IJRASET 4 (2016), 775–780.