Some results on ϕ-primary submodules

Document Type : Research Paper

Authors

1 Department of Mathematics, Roudehen Branch, Islamic Azad University, Roudehen, Iran

2 Department of Mathematics, Statistics and Computer Sciences, Semnan University, Semnan, Iran

Abstract

Let $R$ be a commutative ring with identity,  $M$ be an unitary $R$-module, let $\mathcal{S}(M)$ be the set of all submodules of $M$ and $\phi : \mathcal{S}(M)\rightarrow \mathcal{S}(M)\cup \lbrace\emptyset\rbrace$ be a function. A proper submodule $N$ of $M$ is called $\phi$-pimary submodule if $rx\in N \setminus \phi(N)$ where $r\in R$ and $x\in M$, implies that $x\in N$ or $r\in \sqrt{(N:M)}$. In this work, $\phi$-primary submodules are studied, and some results are obtained.

Keywords

[1] D.D. Anderson and E. Batanieh, Generalizations of prime ideals, Commun. Algebra 36 (2008), 686–696.
[2] M.F. Atiyah and I.G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, 1969.
[3] A. Barnard, Multiplication modules, J. Algebra 71 (1981), 174–178.
[4] M. Ebrahimpour and F. Mirzaee, On ϕ-semiprime submodules, J. Korean Math. Soc. 54 (2017), no. 4, 1099–1108.
[5] M. Ebrahimpour and R. Nekooei, On generalizations of prime submodules, Bull. Iran. Math. Soc. 39 (2013), no. 5, 919–939.
[6] Z.A. El-Best and P.F. Smith. Multiplication modules, Comm. Algebra 16 (1998), no. 4, 755–779.
[7] C.P. Lu, Prime submodules of modules, Commun. Math. Univ. Sancti Pauli 33 (1984), 61–69.
[8] R.L. McCasland and M.E. Moore, Prime submodules, Commun. Algebra 20 (1992), 1803–1817.
[9] R. Sharp, Steps in Commutative Algebra, Cambridge University Press, Cambridge, 2000.
[10] N. Zamani, ϕ-prime submodules, Glasgow Math. J. 52 (2010), no. 2, 253–259.
Volume 16, Issue 10
October 2025
Pages 125-129
  • Receive Date: 22 April 2024
  • Accept Date: 26 May 2024