This paper presents the following new denition which is a natural combination of the denition for asymptotically double equivalent, double statistically limit and double 2 sequences. The double sequence 2 = (m;n) of positive real numbers tending to innity such that m+1;n m;n + 1; m;n+1 m;n + 1; m;n m+1;n m;n+1 m+1;n+1; 1;1 = 1; and Im;n = f(k; l) : m m;n + 1 k m; n m;n + 1 l ng : For double 2sequence; the two non-negative sequences x = (xk;l) and y = (yk;l) are said to be 2asymptotically double statistical equivalent of multiple L provided that for every " > 0 P lim m;n 1 m;n
(k; l) 2 Im;n :
xk;l yk;l L
"
= 0 (denoted by x SL 2 v y) and simply 2asymptotically double statistical equivalent if L = 1.
Esi, A., Acikgoz, M. (2014). On lambda^2-asymptotically double statistical equivalent sequences. International Journal of Nonlinear Analysis and Applications, 5(2), 16-21. doi: 10.22075/ijnaa.2014.122
MLA
A. Esi; M. Acikgoz. "On lambda^2-asymptotically double statistical equivalent sequences". International Journal of Nonlinear Analysis and Applications, 5, 2, 2014, 16-21. doi: 10.22075/ijnaa.2014.122
HARVARD
Esi, A., Acikgoz, M. (2014). 'On lambda^2-asymptotically double statistical equivalent sequences', International Journal of Nonlinear Analysis and Applications, 5(2), pp. 16-21. doi: 10.22075/ijnaa.2014.122
VANCOUVER
Esi, A., Acikgoz, M. On lambda^2-asymptotically double statistical equivalent sequences. International Journal of Nonlinear Analysis and Applications, 2014; 5(2): 16-21. doi: 10.22075/ijnaa.2014.122