In this paper, we solve the quadratic -functional equations where is a fixed non-Archimedean number with . Using the fixed point method and the direct method, we prove the Hyers-Ulam stability of the quadratic -functional equation (0.1) in non-Archimedean Banach spaces.
Park, C. and Kim, S. O. (2017). Quadratic -functional equations. International Journal of Nonlinear Analysis and Applications, 8(1), 1-9. doi: 10.22075/ijnaa.2017.1066.1218
MLA
Park, C. , and Kim, S. O. . "Quadratic -functional equations", International Journal of Nonlinear Analysis and Applications, 8, 1, 2017, 1-9. doi: 10.22075/ijnaa.2017.1066.1218
HARVARD
Park, C., Kim, S. O. (2017). 'Quadratic -functional equations', International Journal of Nonlinear Analysis and Applications, 8(1), pp. 1-9. doi: 10.22075/ijnaa.2017.1066.1218
CHICAGO
C. Park and S. O. Kim, "Quadratic -functional equations," International Journal of Nonlinear Analysis and Applications, 8 1 (2017): 1-9, doi: 10.22075/ijnaa.2017.1066.1218
VANCOUVER
Park, C., Kim, S. O. Quadratic -functional equations. International Journal of Nonlinear Analysis and Applications, 2017; 8(1): 1-9. doi: 10.22075/ijnaa.2017.1066.1218