A non-contradictible axiomatic theory is constructed under the local reversibility of the metric triangle inequality. The obtained notion includes the metric spaces as particular cases and the generated metric topology is T$_{1}$-separated and generally, non-Hausdorff.
Mihai Bica, A. (2017). On the metric triangle inequality. International Journal of Nonlinear Analysis and Applications, 8(1), 159-164. doi: 10.22075/ijnaa.2017.1602.1418
MLA
Alexandre Mihai Bica. "On the metric triangle inequality". International Journal of Nonlinear Analysis and Applications, 8, 1, 2017, 159-164. doi: 10.22075/ijnaa.2017.1602.1418
HARVARD
Mihai Bica, A. (2017). 'On the metric triangle inequality', International Journal of Nonlinear Analysis and Applications, 8(1), pp. 159-164. doi: 10.22075/ijnaa.2017.1602.1418
VANCOUVER
Mihai Bica, A. On the metric triangle inequality. International Journal of Nonlinear Analysis and Applications, 2017; 8(1): 159-164. doi: 10.22075/ijnaa.2017.1602.1418