Universit'e Sultan Moulay Slimane, Facult'e des Sciences et Techniques, Laboratoire de Math'ematiques et Applications, B.P. 523, Beni-Mellal 23000, Marocco
In this paper we prove that if is a Banach space, then for every lower semi-continuous bounded below function there exists a -convex function with arbitrarily small norm, such that attains its strong minimum on This result extends some of the well-known varitional principles as that of Ekeland [On the variational principle, J. Math. Anal. Appl. 47 (1974) 323-353], that of Borwein-Preiss [A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions, Trans. Amer. Math. Soc. 303 (1987) 517-527] and that of Deville-Godefroy-Zizler [Un principe variationel utilisant des fonctions bosses, C. R. Acad. Sci. (Paris). Ser.I 312 (1991) 281--286] and [A smooth variational principle with applications to Hamilton-Jacobi equations in infinite dimensions, J. Funct. Anal. 111 (1993) 197-212].
Maaden, A. and Abdelkader, S. (2017). -variational principle. International Journal of Nonlinear Analysis and Applications, 8(2), 251-261. doi: 10.22075/ijnaa.2017.1664.1439
MLA
Maaden, A. , and Abdelkader, S. . "-variational principle", International Journal of Nonlinear Analysis and Applications, 8, 2, 2017, 251-261. doi: 10.22075/ijnaa.2017.1664.1439
HARVARD
Maaden, A., Abdelkader, S. (2017). '-variational principle', International Journal of Nonlinear Analysis and Applications, 8(2), pp. 251-261. doi: 10.22075/ijnaa.2017.1664.1439
CHICAGO
A. Maaden and S. Abdelkader, "-variational principle," International Journal of Nonlinear Analysis and Applications, 8 2 (2017): 251-261, doi: 10.22075/ijnaa.2017.1664.1439
VANCOUVER
Maaden, A., Abdelkader, S. -variational principle. International Journal of Nonlinear Analysis and Applications, 2017; 8(2): 251-261. doi: 10.22075/ijnaa.2017.1664.1439