New Hermite-Hadamard type inequalities on fractal set

Document Type : Review articles


Department of Mathematics, Faculty of Science and Arts, Duzce University, Duzce, Turkey


In this study, we present the new Hermite-Hadamard type inequality for functions which are $h$-convex on fractal set $\mathbb{R}^{\alpha }$ $(0<\alpha \leq 1)$ of real line numbers. Then we provide the special cases of the result using different type of convex mappings.


[1] H. Budak, M.Z. Sarikaya and E. Set, Generalized Ostrowski type inequalities for functions whose local fractional derivatives are generalized s-convex the second sense, J. Appl. Math. Comput. Mech. 15 (2016) 11–21.
[2] G-S. Chen, Generalizations of Holder’s and some related integral inequalities on fractal space, J. Funct. Spac. Appl. 2013 (2013), Article ID 198405.
[3] S.S. Dragomir and C.E.M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.
[4] S. Erden and M.Z. Sarikaya, Generalized Pompeiu type inequalities for local fractional integrals and its applications, Appl. Math. Comput. 274 (2016) 282–291.
[5] A. Kılıcman, W. Saleh, Some generalized Hermite-Hadamard type integral inequalities for generalized s−convex functions on fractal sets, Adv. Diff. Equ. 2015 (2015), 15 pages.
[6] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies, Vol. 204, Elsevier (North-Holland) Science Publishers, Amsterdam, 2006.
[7] H. Mo, X Sui and D Yu, Generalized convex functions on fractal sets and two related inequalities, Abstr. Appl. Anal. 2014 (2014), Article ID 636751, 7 pages.
[8] H. Mo and X. Sui, Generalized s-convex functions on fractal sets, Abstr. Appl. Anal. 2014 (2014), Article ID 254737, 8 pages.
[9] M.A. Noor, K.I. Noor and M.U. Awan, A new Hermite-Hadamard type inequality for h-convex functions, Creat. Math. Inf. 24 (2015) 191–197.
[10] J.E. Pecaric, F. Proschan and Y.L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Boston, 1992.
[11] M.Z. Sarikaya and H. Budak, On Fejer type inequalities via local fractional integrals, J. Fract. Calc. Appl. 8 (2017) 59–77.
[12] M.Z. Sarikaya, S. Erden and H. Budak, Some generalized Ostrowski type inequalities involving local fractional integrals and applications, Adv. Ineq. Appl. 2016 (2016), 6.
[13] M. Z. Sarikaya, S. Erden and H. Budak, Some integral inequalities for local fractional integrals, Int. J. Anal. Appl. 14 (2017) 9–19.
[14] M. Z Sarikaya, T. Tunc and H Budak, On generalized some integral inequalities for local fractional integrals, Appl. Math. Comput. 276 (2016) 316–323.
[15] M.Z. Sarikaya and H. Budak, Generalized Ostrowski type inequalities for local fractional integrals, Proc. Amer. Math. Soc. 145 (2017) 1527–1538.
[16] F. Usta, H. Budak and M.Z. Sarikaya Yang-Laplace transform method for local fractional Volterra and Abel’s integro-differential equations, ResearchGate Article, Available online at:
[17] M. Vivas, J. Hernandez and N. Merentes, New Hermite-Hadamard and Jensen type inequalities for h-convex functions on fractal sets, Rev. Colom. Mat. 50 (2016) 145–164.
[18] X-J. Yang, Local Fractional Functional Analysis and its Applications, Asian Academic, Publisher, Hong Kong, 2011.
[19] X.-J. Yang, Advanced Local Fractional Calculus and its Applications, World Science Publisher, New York, London and Hong Kong, 2012.
[20] X-J. Yang, D. Baleanu and H.M. Srivastava, Local Fractional Integral Transforms and Their Applications, Academic Press, Elsevier, 2015.
[21] Y.-J. Yang, D. Baleanu and X.-J. Yang, Analysis of fractal wave equations by local fractional Fourier series method, Adv. Math. Phys. 2013 (2013), Article ID 632309, 1–6.
[22] X-J. Yang, D. Baleanu and H.M. Srivastava, Local fractional similarity solution for the diffusion equation defined on Cantor sets, Appl. Math. Lett. 47 (2015) 54–60.
[23] X-J. Yang, J.A. Tenreiro Machado and J. Hristov, Nonlinear dynamics for local fractional Burgers’ equation arising in fractal flow, Nonlinear Dyn. 84 (2016) 3–7.
[24] X-J. Yang, J.A.T. Machado, C. Cattani and F. Gao, On a fractal LC-electric circuit modeled by local fractional calculus, Comm. Nonlinear Sci. Num. Simul. 47 (2017) 200–206.
Volume 12, Issue 1
May 2021
Pages 782-789
  • Receive Date: 08 March 2017
  • Revise Date: 03 May 2018
  • Accept Date: 05 May 2018