In Hilbert space , we prove the equivalence between the modulus of smoothness and the -functionals constructed by the Sobolev space corresponding to the Fourier transform. For this purpose, using a spherical mean operator.
Daher, R. and El Hamma, M. (2012). Equivalence of -functionals and modulus of smoothness for Fourier transform. International Journal of Nonlinear Analysis and Applications, 3(2), 38-43. doi: 10.22075/ijnaa.2012.40
MLA
Daher, R. , and El Hamma, M. . "Equivalence of -functionals and modulus of smoothness for Fourier transform", International Journal of Nonlinear Analysis and Applications, 3, 2, 2012, 38-43. doi: 10.22075/ijnaa.2012.40
HARVARD
Daher, R., El Hamma, M. (2012). 'Equivalence of -functionals and modulus of smoothness for Fourier transform', International Journal of Nonlinear Analysis and Applications, 3(2), pp. 38-43. doi: 10.22075/ijnaa.2012.40
CHICAGO
R. Daher and M. El Hamma, "Equivalence of -functionals and modulus of smoothness for Fourier transform," International Journal of Nonlinear Analysis and Applications, 3 2 (2012): 38-43, doi: 10.22075/ijnaa.2012.40
VANCOUVER
Daher, R., El Hamma, M. Equivalence of -functionals and modulus of smoothness for Fourier transform. International Journal of Nonlinear Analysis and Applications, 2012; 3(2): 38-43. doi: 10.22075/ijnaa.2012.40