In this paper, we introduce the (G, )-Ciric-Reich-Rus contraction on metric space endowed with a graph, such that (X; d) is a metric space, and V (G) is the vertices of G coincides with X. We give an example to show that our results generalize some known results
Mirzaee, S. and Eshaghi, M. (2020). (G,)-Ciric-Reich-Rus contraction on metric space endowed with a graph. International Journal of Nonlinear Analysis and Applications, 11(1), 191-197. doi: 10.22075/ijnaa.2020.4256
MLA
Mirzaee, S. , and Eshaghi, M. . "(G,)-Ciric-Reich-Rus contraction on metric space endowed with a graph", International Journal of Nonlinear Analysis and Applications, 11, 1, 2020, 191-197. doi: 10.22075/ijnaa.2020.4256
HARVARD
Mirzaee, S., Eshaghi, M. (2020). '(G,)-Ciric-Reich-Rus contraction on metric space endowed with a graph', International Journal of Nonlinear Analysis and Applications, 11(1), pp. 191-197. doi: 10.22075/ijnaa.2020.4256
CHICAGO
S. Mirzaee and M. Eshaghi, "(G,)-Ciric-Reich-Rus contraction on metric space endowed with a graph," International Journal of Nonlinear Analysis and Applications, 11 1 (2020): 191-197, doi: 10.22075/ijnaa.2020.4256
VANCOUVER
Mirzaee, S., Eshaghi, M. (G,)-Ciric-Reich-Rus contraction on metric space endowed with a graph. International Journal of Nonlinear Analysis and Applications, 2020; 11(1): 191-197. doi: 10.22075/ijnaa.2020.4256