A discrete problem involving the $p(k)-$ Laplacian operator with three variable exponents

Document Type : Research Paper

Authors

Oriental applied mathematics laboratory‎, ‎FS Oujda‎, ‎Team of Modeling and Scientific Computing‎, ‎FP Nador‎, ‎University Mohammed 1‎, ‎Morocco‎.

Abstract

‎In this paper‎, ‎we determine the different intervals of a positive parameters $\lambda$‎, ‎for which we prove the existence and non existence of a non trivial solutions for the discrete problem (1.1)‎. ‎Our technical approach is based on the variational principle and the critical point theory‎.

Keywords

[1] R.P. Agarwal, K. Perera and D. O’Regan, Multiple positive Solutions of singular and nonsingular discrete problems via variational Methods, Nonlinear Anal. 58 (2004) 69–73.
[2] R.P. Agarwal, K. Perera and D. O’Regan, Multiple positive Solutions of singular p-Laplacian discrete problems via variational methods, Adv. Differ. Equ. 2 (2009) 93–99.
[3] A. Cabada, A. Iannizzotto and S. Tersssain, Multiple Solutions for discrete boundary value problems, J. Math. Anal. Appl. 356(2009) 418–428.
[4] G. Bonanno and P. Candito, Infinitely many solutions for a class of discrete non-linear boundary value problems, Appl. Anal. 884 (2009) 605–616.
[5] G. Bonanno, P. Candito and G. DAgui, Variational methods on finite-dimensional Banach spaces and discrete problems, Adv. Nonlinear Stud. 14 (2014) 915–939.
[6] G. Bonanno and G. DAgui, Two non-zero solutions for elliptic Dirichlet problems, Z. Anal. Anwend. 35 (2016) 449–464.
[7] J. Chu and D. Jiang, Eigenvalues and discrete boundary value problems for the one-dimensional p-Laplacian, J. Math. Anal. Appl. 305 (2005) 452–465.
[8] M. Galewski and R. Wieteska, Existence and multiplicity results for boundary value problems connected with the discrete p(.)-Laplacian on weighted finite graphs, Appl. Math. Comput. 290 (2016) 376–391.
[9] M. Galewski and R. Wieteska, On the system of anisotropic discrete BVPs, J. Difference Equ. Appl. 19(7) (2013) 1065–1081.
[10] M. Galewski and R. Wieteska, Existence and multiplicity of positive solutions for discrete anisotropic equations. Turk. J. Math. 38 (2014) 297–310.
[11] M. Galewski and R. Wieteska, Positive solutions for anisotropic discrete boundary-value problems. Electron. J. Differ. Equ. Appl. 2013(32) (2013) 1–9.
[12] M. Galewski and Sz. Glab, On the discrete boundary value problem for anisotropic equation, J. Math. Anal. Appl. 386 (2012) 956–965.
[13] M. Galewski, G. Molica Bisci and R. Wieteska, Existence and multiplicity of solutions to discrete inclusions with the p(k)-Laplacian problem, J. Difference Equ. Appl. 21(10) (2015) 887–903.
[14] J. Henderson and H.B. Thompson, Existence of multiple solutions for second order discrete boundary value problems, Comput. Math. Appl. 43 (2002) 1239–1248.
[15] B. Kone and S. Ouaro, Weak solutions for anisotropic discrete boundary value problems, J. Differ. Equ. Appl. 16(2) (2010) 1–11.
[16] M. Khaleghi Moghadam and J. Henderson, Triple solutions for a Dirichlet boundary value problem involving a perturbed discrete p(k)-Laplacian operator, Open Math. 15 (2017) 1075–1089.
[17] M. Khaleghi Moghadam and M. Avci, Existence results to a nonlinear p(k)-Laplacian difference equation, J. Difference Equ. Appl. 23(10) (2017), 1652 – 1669.
[18] B. Kone and S. Ouaro, Weak solutions for anisotropic discrete boundary value problems, J. Differ. Equ. Appl. 17(10) (2011) 1537–1547.
[19] A. Kristaly, M. Mihailescu, V. Radulescu and S. Tersian, Spectral estimates for a nonhomogeneous difference problem. Commun. Contemp. Math. 12 (2010) 1015–1029.
[20] G. Molica Bisci and D. Repovs, Existence of solutions for p-Laplacian discrete equations, Appl. Math. Comput. 242 (2014) 454–461.
[21] G. Molica Bisci and D. Repovs, On sequences of solutions for discrete anisotropic equations, Expo. Math. 32 (2014) 284–295.
[22] M. Mihailescu, V. Radulescu and S. Tersian, Eigenvalue problems for anisotropic discrete boundary value problems, J. Difference Equ. Appl. 15 (2009) 557–567.
[23] M. Mihailescu and V. Radulescu, Spectrum in an unbounded interval for a class of nonhomogeneous differential operators, Bull. London Math. Soc. 40 (2008) 972–984.
[24] J. Smejda and R. Wieteska, On the dependence on parameters for second-order discrete boundary value problems with the p(k)-Laplacian, Opuscula Math. 344 (2014) 851–870.
[25] M. Struwe, Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin, 1986.
Volume 12, Issue 1
May 2021
Pages 521-532
  • Receive Date: 30 June 2020
  • Revise Date: 06 February 2021
  • Accept Date: 22 August 2020