[1] N. Brown and P. Bladon, ”Spectroscopy and structure of (1, 3-diketonato) boron difluorides and related compounds,” Journal of the Chemical Society A: Inorganic, Physical, Theoretical, pp. 526-532, 1969.
[2] P. Cadusch, M. Hlaing, S. Wade, S. McArthur, and P. Stoddart, ”Improved methods for fluorescence background
subtraction from Raman spectra,” Journal of Raman Spectroscopy, vol. 44, pp. 1587-1595, 2013.
[3] T. T. Cai, D. Zhang, and D. Ben–Amotz, ”Enhanced chemical classification of Raman images using multiresolution wavelet transformation,” Applied spectroscopy, vol. 55, pp. 1124-1130, 2001.
[4] J. D. A. Espinoza, V. Sazhnikov, S. Sabik, D. Ionov, E. Smits, S. Kalathimekkad, et al., ”Flexible optical chemical
sensor platform for BTX,” Procedia Engineering, vol. 47, pp. 607-610, 2012.
[5] R. Heinrich, A. Popescu, A. Hangauer, R. Strzoda, and S. H¨ofling, ”High performance direct absorption spectroscopy of pure and binary mixture hydrocarbon gases in the 6–11 $$ rupmu $$ m range,” Applied Physics B,
vol. 123, pp. 1-9, 2017.
[6] R. Kengne-Momo, P. Daniel, F. Lagarde, Y. Jeyachandran, J. Pilard, M. Durand-Thouand, et al., ”Protein interactions investigated by the Raman spectroscopy for biosensor applications,” International Journal of Spectroscopy,
vol. 2012, 2012.
[7] A.-I. Z. Khalaf, M. Alboedam, H. jwad Abidalhussein, and A.-Z. S. Hassan, ”Detecting levels amino acids for
proteins of different for patients with myeloma and comparing them using a portable Raman spectrometer,”
EurAsian Journal of BioSciences, vol. 14, pp. 2029-2036, 2020.
[8] A.-I. Z. Khalaf, M. Alboedam, H. J. Abidalhussein, and A.-Z. S. Hassan, ”The role of blood proteins and nucleic
acids in the detection of multiple Myeloma based on Raman spectroscopy,” EurAsian Journal of BioSciences, vol.
14, pp. 1955-1963, 2020.
[9] A. Khlebunov, D. Ionov, P. Komarov, V. Aristarkhov, V. Sazhnikov, A. Petrov, et al., ”An experimental system
for investigating the characteristics of optical sensor materials,” Instruments and Experimental Techniques, vol.
52, pp. 132-136, 2009.
[10] J. Luo, K. Ying, P. He, and J. Bai, ”Properties of Savitzky–Golay digital differentiators,” Digital Signal Processing, vol. 15, pp. 122-136, 2005.
[11] T. C. E. Marcus, M. H. Ibrahim, N. H. Ngajikin, and A. I. Azmi, ”Optical path length and absorption cross
section optimization for high sensitivity ozone concentration measurement,” Sensors and Actuators B: Chemical,
vol. 221, pp. 570-575, 2015.
[12] P. Mosier-Boss, S. Lieberman, and R. Newbery, ”Fluorescence rejection in Raman spectroscopy by shifted-spectra,
edge detection, and FFT filtering techniques,” Applied Spectroscopy, vol. 49, pp. 630-638, 1995.
[13] A. O’Grady, A. C. Dennis, D. Denvir, J. J. McGarvey, and S. E. Bell, ”Quantitative Raman spectroscopy of
highly fluorescent samples using pseudosecond derivatives and multivariate analysis,” Analytical chemistry, vol.
73, pp. 2058-2065, 2001.
[14] T. Ouyang, C. Wang, Z. Yu, R. Stach, B. Mizaikoff, B. Liedberg, et al., ”Quantitative analysis of gas phase IR
spectra based on extreme learning machine regression model,” Sensors, vol. 19, p. 5535, 2019.
[15] F. Pena-Pereira, I. Costas-Mora, V. Romero, I. Lavilla, and C. Bendicho, ”Advances in miniaturized UV-Vis
spectrometric systems,” TrAC Trends in Analytical Chemistry, vol. 30, pp. 1637-1648, 2011.
[16] L. Quintero, S. Hunt, and M. Diem, ”Denoising of raman spectroscopy signals,” in Poster presented at the 2007
R2C Multi Spectral Discrimination Methods Conference, 2007.
[17] A. P. Shreve, N. J. Cherepy, and R. A. Mathies, ”Effective rejection of fluorescence interference in Raman
spectroscopy using a shifted excitation difference technique,” Applied spectroscopy, vol. 46, pp. 707-711, 1992.
[18] S. Twiss, D. Teague, J. Bozek, and M. Sink, ”Application of infrared spectroscopy to exhaust gas analysis,”
Journal of the Air Pollution Control Association, vol. 5, pp. 75-83, 1955.