[1] M. Castelli and L. Vanneschi, Genetic algorithm with variable neighborhood search for the optimal allocation of
goods in shop shelves, Oper. Res. Lett. 42(5) (2014), 355–360.
[2] A. Chaghari, M. R. Feizi-Derakhshi and M. A. Balafar, Fuzzy clustering based on Forest optimization algorithm,
J. King Saud Univer. Comp. Infor. Sci. 30(1) (2018), 25–32.
[3] P. Desmet and V. Renaudin, Estimation of product category sales responsiveness to allocated shelf space, Inter,
J. Res. Mark. 15(5) (1998), 443–457.
[4] X. Dreze, S. J. Hoch and M. E. Purk, Shelf management and space elasticity, J. Reta. 70(4) (1994), 301–326.
[5] M. Eisend, Shelf space elasticity: A meta-analysis, J. Reta. 90(2) (2014), 168–181.
[6] M. Ghaemi and M. R. Feizi-Derakhshi, Forest optimization algorithm, Exp. Syst. Appl. 41(15) (2014), 6676–6687.
[7] M. Ghaemi and M. R. Feizi-Derakhshi, Feature selection using forest optimization algorithm., Patt. Recog. 60
(2016), 121–129.
[8] H. K. Gajjar G. K. Adil, A piecewise linearization for retail shelf space allocation problem and a local search
heuristic, Ann. Oper. Res. 179(1) (2010), 149–167.
[9] J. M. Hansen, S. Raut, and S. Swami, Retail shelf allocation: a comparative analysis of heuristic and metaheuristic approaches, J. Reta. 86(1) (2010), 94–105.
[10] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, Optimization by simulated annealing, Sci., 220(4598) (1983),
671–680.
[11] A. Lim, B. Rodrigues and X. Zhang, Metaheuristics with local search techniques for retail shelf-space optimization,
Manag. Sci. 50(1) (2004), 117–131.
[12] M. Maadi, M. Javidnia and M. Ghasemi, Applications of two new algorithms of cuckoo optimization (CO) and
forest optimization (FO) for solving single row facility layout problem (SRFLP), J. AI Data Min. 4(1) (2016),
35–48.
[13] M. Maadi, M. Javidnia and R. Jamshidi, Two Strategies based on meta-heuristic algorithms for parallel row
ordering problem (PROP), Iran. J. Manag. Stud. 10(2) (2017), 467–498.
[14] D. C. Montgomery, Design and analysis of experiments, John Wiley & Sons, 2017.
[15] B. Naderi, M. Khalili and R. Tavakkoli-Moghaddam, A hybrid artificial immune algorithm for a realistic variant
of job shops to minimize the total completion time. Comput. Indust. Engin. 56(4) (2009), 1494–1501.
[16] S. M. Orand, A. Mirzazadeh, F. Ahmadzadeh and F. Talebloo, Optimization of the inflationary inventory control
model under stochastic conditions with Simpson approximation: Particle swarm optimization approach, Iran. J.
Manag. Stud. 8(2) (2015), 203–220.
[17] V. Sahargahi and M. R. Feizi-Derakhshi, Course timetabling using Forest algorithm, Inter. J. Comput. Sci.
Network Security, 17(2) (2017), 83–93.
[18] P. M. Reyes and G. V. Frazier, Goal programming model for grocery shelf space allocation, Europ. J. Oper. Res.
181(2) (2007), 634–644.
[19] T. Van Woensel, R. A. C. M. Broekmeulen, K. H. van Donselaar and J. C. Fransoo, Planogram integrity: a
serious issue, ECR J. 6 (2006), 4–5.
[20] M. H. Yang and W. C. Chen, A study on shelf space allocation and management, Inter. J. Produc. Econ. 60
(1999), 309–317.
[21] M. H. Yang, An efficient algorithm to allocate shelf space, Europ. J. Oper. Res. 131(1) (2001), 107–118.
[22] E. Yadegari, H. Najmi, M. Ghomi-Avili and M. Zandieh, A flexible integrated forward/reverse logistics model with
random path-based memetic algorithm, Iran. J. Manag. Stud. 8(2) (2015), 287–313.
[23] M. Zareei and H. A. Hassan-Pour, A multi-objective resource-constrained optimization of time-cost trade-off
problems in scheduling project, Iran. J. Manag. Stud. 8(4) (2015), 653–685.