[1] A.Z. Afify and O.A. Mohamed, A new three-parameter exponential distribution with variable shapes for the hazard rate: estimation and applications, J. Math. 8(135) (2020) 1–17.
[2] M. Alizadeh, S. Razaei, S.F. Bagheri and S. Nadarajah, Efficient estimation for the generalized exponential distribution, Stat. Pap. 56 (2015a) 1015–1031.
[3] M. Alizadeh, S. Rezaei, S. Nadarajah and SF. Bagheri, On the estimation of the inverse Weibull distribution, Data Sci. J. 15 (2017) 167–182.
[4] M. Alizadeh, S. Rezaei and S.F. Bagheri, On the estimation for the Weibull distribution, Ann. Data Sci. 2 (2015b)373–390.
[5] M. Alizadeh, S.F. Bagheri, E. Baloui Jamkhaneh and S. Nadarajah, Estimates of the PDF and the CDF of the exponentiated Weibull distribution, Braz J. Probab. Stat. 29 (2015c) 695–716.
[6] S.F. Bagheri, M. Alizadeh and S. Nadarajah, Efficient estimation of the PDF and the CDF of the exponentiated Gumbel distribution, Commun. Stat. - Simul. Comput. 45 (2016a) 339–361.
[7] S.F. Bagheri, M. Alizadeh, S. Nadarajah and E. Deiri, Efficient estimation of the PDF and the CDF of the Weibull extension model, Commun. Stat. - Simul. Comput. 45 (2016b) 2191–2207.
[8] S.F. Bagheri, M. Alizadeh, E. Baloui Jamkhaneh and S. Nadarajah, Evaluation and comparison of estimations in the generalized exponential-Poisson distribution, J. Stat. Comput. Simul. 84 (2014) 2345–2360.
[9] A.M. Basheer, Alpha power inverse Weibull distribution with reliability application, J. Taibah Univ. Sci. 13(1) (2019) 423–432.
[10] K.P. Burnham and DR. Anderson, Multimodel inference: Understanding AIC and BIC in model selection, Sociol. Methods Res. 33 (2004) 261–304.
[11] U.J. Dixit and M. Jabbari Nooghabi, Efficient estimation in the Pareto distribution, Stat. Methodol. 7 (2010) 687–691.
[12] A. Drapella, Complementary Weibull distribution: unknown or just forgotten, Qual. Reliab. Eng. Int. 9 (1993) 383–385.
[13] Y. Fang, Asymptotic equivalence between cross-validations and Akaike information criteria in mixed-effects models, Data Sci. J. 9 (2011) 15–21.
[14] A. Flaih, H. Elsalloukh, E. Mendi and M. Milanova, The exponentiated inverted Weibull distribution, Appl. Math. Inf. Sci. 6(2) (2012) 167–171.
[15] FR. Gusmao, E.M. Ortega and G.M. Cordeiro, The generalized inverse Weibull distribution, Stat. Pap. 52 (2011) 591–619.
[16] K. Jain, N. Singla and S.K. Sharma, The generalized inverse generalized Weibull distribution and its properties, J. Probab. 2014, 1–11.
[17] X. Jia, S. Nadarajah and B. Guo, Inference on q-Weibull parameters, Stat. Pap. 61 (2020) 575–593.
[18] J.H.K. Kao, A graphical estimation of mixed Weibull parameters in life testing electron tubes, Technometrics. 1 (1959) 389–407.
[19] J.H.K. Kao, Computer methods for estimating Weibull parameters in reliability studies, Trans. Reliab. Qual. Control. 13 (1958) 15–22.
[20] A.Z. Keller, A.R.R. Kamath and UD. Perera, Reliability analysis of CNC machine tools, Reliab. Eng. Syst. Safe. 3(6) (1982) 449–473.
[21] M.S. Khan and R. King, A new class of transmuted inverse Weibull distribution for reliability analysis, Am. J. Math. Manag. Sci. 33(4) (2014) 261–286.
[22] M.S. Khan and R. King, New generalized inverse Weibull distribution for lifetime modeling, Commun. Stat. Appl. Methods. 23(2) (2016) 147–161.
[23] P. Kumaraswamy, A generalized probability density function for double bounded random process, J. Hydrol. 46(1-2) (1980) 79–88.
[24] J.F. Lawless, Statistical Models and Methods for Lifetime Data. John Wiley and Sons, Inc., New York, 1982.
[25] S.S. Maiti and I. Mukherjee, On estimation of the PDF and CDF of the Lindley distribution, Commun. Stat. - Simul. Comput. 47(5) (2018) 1370–1381.
[26] F. Maleki Jebely, K. Zare and E. Deiri, Efficient estimation of the PDF and the CDF of the inverse Rayleigh distribution, J. Stat. Comput. Simul. 88(1) (2018) 75–88.
[27] F. Maleki Jebely and E. Deiri, Efficient estimation of the PDF and the CDF of the Frechet distribution, Ann. Data Sci. 4 (2017) 211–225.
[28] F. Maleki Jebely and E. Deiri, Estimation methods for the probability density function and the cumulative distribution function of the Pareto-Rayleigh distribution, J. Stat. 54(1) (2020) 135–151.
[29] H.M. Okasha, A.H. El-Baz, A.M.K. Tarabia and A.M. Basheer, Extended inverse Weibull distribution with reliability application, J. Egypt. Math. Soc. 25 (2017) 343–349.
[30] M.Q. Shahbaz, S. Shahbaz and N.S. Butt, The Kumaraswamy-inverse Weibull distribution, Pakistan J. Stat. Oper. Res. 8 (2012) 479–489.
[31] Y.M. Tripathi, A.K. Mahto and S. Dey, Efficient estimation of the PDF and the CDF of a generalized Logistic distribution, Ann. Data Sci. 4 (2017) 63–81.