Gerghaty type results via simulation and $\mathcal{C}$-class functions with application

Document Type : Research Paper

Authors

1 Department of Mathematics, University of Sargodha, Sargodha-40100, Pakistan

2 Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Beograd 35, Serbia

Abstract

In this paper we study the notion of Gerghaty type contractive mapping via simulation function along with $\mathcal{C}$-class functions and prove the existence of several fixed point results in ordinary and partially ordered metric spaces. An example is given to show the validity of our results given herein. Moreover, existence of solution of two-point boundary value second order nonlinear differential equation is obtain.

Keywords

[1] R.P. Agarwal, N. Hussain and M.A. Taoudi, Fixed point theorems in ordered Banach spaces and applications to nonlinear integral equations, Abstr. Appl. Anal. 2012 (2012), Article ID 245872, 15 pages.
[2] A.H. Ansari, Note on ϕ-ψ-contractive type mappings and related fixed point, The 2nd Regional Conference on Math. Appl. PNU, Sept. (2014) 377–380.
[3] A.H. Ansari, H. Isik, and S. Radenovic, Coupled fixed point theorems for contractive mappings involving new function classes and applications, Filomat, 31(7) (2017) 1893–1907.
[4] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math. 3 (1922) 133–181.
[5] L.B. Ciric, A generalization of Banachs contraction principle, Proc. Am. Math. Soc. 45(2) (1974) 267–273.
[6] S.H. Cho, J.S. Bae and E. Karapinar, Fixed point theorems for α-Geraghty contraction type maps in metric spaces, Fixed Point Theory Appl. 2013 (2013) 329.
[7] Z.M. Fadail, A. .B. Ahmad, A.H. Ansari, S. Radenovic and M. Rajovic, Some common fixed point results of mappings in 0-σ-complete metric-like spaces, Appl. Math. Sci. 9 (2015), 5009–5027.
[8] M. Geraghty, On contractive mappings, Proc. Amer. Math. Soc. 40(2) (1973) 604–608.
[9] N. Hussain, M.A. Kutbi and P. Salimi, Fixed point theory in α-complete metric spaces with applications, Abstr. Appl. Anal. 2014 (2014).
[10] N. Hussain and P. Salimi, Suzuki-Wardowski type fixed point theorems for α-GF-contractions, Taiwanese J. Math. 18(6) (2014) 1879–1895.
[11] M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl. 2014 (2014), 8 pages.
[12] P. Kumam, D. Gopal and L. Budha, A new fixed point theorem under Suzki type Z-contraction mappings, J. Math. Anal. 8(1) (2017) 113–119.
[13] E. Karapinar, Fixed points results via simulation functions, Filomat 8 (2016) 2343–2350.
[14] E. Karapinar, P. Kumam and P. Salimi, On α-ψ-Meir-Keeler contractive mappings, Fixed Point Theory Appl. 2013 (2013) 94.
[15] F. Khojasteh, S. Shukla, and S. Radenovic, A new approach to the study of fixed point theorems via simulation functions, Filomat 29(6) (2015) 1189–1194.
[16] W.A. Kirk, Fixed points of asymptotic contractions, J. Math. Anal. Appl. 277 (2003) 645–650.
[17] P. Kumam, D. Gopal and L. Budha, A new fixed point theorem under Suzki type Z-contraction mappings, J. Math. Anal. 8(1) (2017) 113–119.
[18] X.L. Liu, A.H. Ansari, S. Chandok and S. Radenovic, On some results in metric spaces using auxiliary simulation functions via new functions, J. Comput. Anal. Appl. 24(6) (2018) 1103–1114.
[19] A. Nastasi and P. Vetro, Fixed point results on metric and partial metric spaces via simulation functions, J. Nonlinear Sci. Appl. 8 (2015) 1059–1069.
[20] J.J. Nieto and R.R. Lopez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005) 223–229.
[21] A. Padcharoen, P. Kumam, P. Saipara, and P. Chaipunya, Generalized Suzuki type Z-contraction in complete metric spaces, Kragujevac J. Math. 42(3) (2018) 419–430.
[22] S. Radenovi´c, S. Chandok, Simulation type functions and coincidence points, Filomat  32(1) (2018) 141–147.
[23] A.C.M. Ran and M.C.B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132(5) (2003) 1435–1443.
[24] A. Rold, E. Karapinar, C. Rold and J. Martinez, Coincidence point theorems on metric spaces via simulation function, J. Comput. Appl. Math. 275 (2015) 345–355.
[25] T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Anal. Theory Meth. Appl. 71(11) (2009) 5313–5317.
[26] H. Simsek and M. Yalcin, Generalized Z-contraction on quasi metric spaces and a fixed point result, J. Nonlinear Sci. Appl. 10 (2017) 3397–3403.
[27] S. Wang, A.H. Ansari and S. Chandok, Some fixed point results for non-decreasing and mixed monotone mappings with auxiliary functions, Fixed Point Theory Appl. 2015 (2015) 209.
[28] A. Amini-Harandi and H. Emami, A fixed point theorem for contraction type maps in partially ordered metric spaces and applications to ordinary differential equations, Nonlinear Anal. 72 (2010) 2238–2242.
Volume 12, Issue 1
May 2021
Pages 1057-1071
  • Receive Date: 25 September 2018
  • Revise Date: 16 November 2019
  • Accept Date: 22 November 2019