[1] R.P. Agarwal, N. Hussain and M.A. Taoudi, Fixed point theorems in ordered Banach spaces and applications to nonlinear integral equations, Abstr. Appl. Anal. 2012 (2012), Article ID 245872, 15 pages.
[2] A.H. Ansari, Note on ϕ-ψ-contractive type mappings and related fixed point, The 2nd Regional Conference on Math. Appl. PNU, Sept. (2014) 377–380.
[3] A.H. Ansari, H. Isik, and S. Radenovic, Coupled fixed point theorems for contractive mappings involving new function classes and applications, Filomat, 31(7) (2017) 1893–1907.
[4] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math. 3 (1922) 133–181.
[5] L.B. Ciric, A generalization of Banachs contraction principle, Proc. Am. Math. Soc. 45(2) (1974) 267–273.
[6] S.H. Cho, J.S. Bae and E. Karapinar, Fixed point theorems for α-Geraghty contraction type maps in metric spaces, Fixed Point Theory Appl. 2013 (2013) 329.
[7] Z.M. Fadail, A. .B. Ahmad, A.H. Ansari, S. Radenovic and M. Rajovic, Some common fixed point results of mappings in 0-σ-complete metric-like spaces, Appl. Math. Sci. 9 (2015), 5009–5027.
[8] M. Geraghty, On contractive mappings, Proc. Amer. Math. Soc. 40(2) (1973) 604–608.
[9] N. Hussain, M.A. Kutbi and P. Salimi, Fixed point theory in α-complete metric spaces with applications, Abstr. Appl. Anal. 2014 (2014).
[10] N. Hussain and P. Salimi, Suzuki-Wardowski type fixed point theorems for α-GF-contractions, Taiwanese J. Math. 18(6) (2014) 1879–1895.
[11] M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl. 2014 (2014), 8 pages.
[12] P. Kumam, D. Gopal and L. Budha, A new fixed point theorem under Suzki type Z-contraction mappings, J. Math. Anal. 8(1) (2017) 113–119.
[13] E. Karapinar, Fixed points results via simulation functions, Filomat 8 (2016) 2343–2350.
[14] E. Karapinar, P. Kumam and P. Salimi, On α-ψ-Meir-Keeler contractive mappings, Fixed Point Theory Appl. 2013 (2013) 94.
[15] F. Khojasteh, S. Shukla, and S. Radenovic, A new approach to the study of fixed point theorems via simulation functions, Filomat 29(6) (2015) 1189–1194.
[16] W.A. Kirk, Fixed points of asymptotic contractions, J. Math. Anal. Appl. 277 (2003) 645–650.
[17] P. Kumam, D. Gopal and L. Budha, A new fixed point theorem under Suzki type Z-contraction mappings, J. Math. Anal. 8(1) (2017) 113–119.
[18] X.L. Liu, A.H. Ansari, S. Chandok and S. Radenovic, On some results in metric spaces using auxiliary simulation functions via new functions, J. Comput. Anal. Appl. 24(6) (2018) 1103–1114.
[19] A. Nastasi and P. Vetro, Fixed point results on metric and partial metric spaces via simulation functions, J. Nonlinear Sci. Appl. 8 (2015) 1059–1069.
[20] J.J. Nieto and R.R. Lopez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005) 223–229.
[21] A. Padcharoen, P. Kumam, P. Saipara, and P. Chaipunya, Generalized Suzuki type Z-contraction in complete metric spaces, Kragujevac J. Math. 42(3) (2018) 419–430.
[22] S. Radenovi´c, S. Chandok, Simulation type functions and coincidence points, Filomat 32(1) (2018) 141–147.
[23] A.C.M. Ran and M.C.B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132(5) (2003) 1435–1443.
[24] A. Rold, E. Karapinar, C. Rold and J. Martinez, Coincidence point theorems on metric spaces via simulation function, J. Comput. Appl. Math. 275 (2015) 345–355.
[25] T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Anal. Theory Meth. Appl. 71(11) (2009) 5313–5317.
[26] H. Simsek and M. Yalcin, Generalized Z-contraction on quasi metric spaces and a fixed point result, J. Nonlinear Sci. Appl. 10 (2017) 3397–3403.
[27] S. Wang, A.H. Ansari and S. Chandok, Some fixed point results for non-decreasing and mixed monotone mappings with auxiliary functions, Fixed Point Theory Appl. 2015 (2015) 209.
[28] A. Amini-Harandi and H. Emami, A fixed point theorem for contraction type maps in partially ordered metric spaces and applications to ordinary differential equations, Nonlinear Anal. 72 (2010) 2238–2242.