[1] R.P. Agarwal, A propos dune note M. Pierre Humbert, C. R. Acad. Sci. Paris 236 (1953) 2031–2032.
[2] C. Alsina and R. Ger, On some inequalities and stability results related to the exponential function, J. Inequal. Appl. 2 (1998) 373–380.
[3] S. Eshaghi and A. Ansari, Lyapunov inequality for fractional differential equations with Prabhakar derivative, Math. Inequal. Appl. 19 (2016) 349–358.
[4] S. Eshaghi and A. Ansari, Finite fractional Sturm-Liouville transform for generalized fractional derivatives, Iran. J. Sci. Technol. Trans. A Sci. 41 (2017) 931–937.
[5] N. Eghbali, V. Kalvandi and J.M. Rassias, A fixed point approach to the Mittag-Leffler-Hyers-Ulam stability of a fractional integral equation, Open Math. 14 (2016) 237–246.
[6] G. Farid, J. Pecaric and Z. Tomovski, Opial-type inequalities for fractional integral operator involving MittagLeffler function, Fract. Diff. Calc. 5 (2015) 93–106.
[7] R. Garra, R. Gorenflo, F. Polito and Z. Tomovski, Hilfer-Prabhakar derivatives and some applications, Appl. Math. Comput. 42(2) (2014) 576–589.
[8] P. Humbert and R.P. Agarwal, Sur la function de Mittag-Leffler et quelquesunes deses generalizations, Bull. Sci. Math. (2) (77) (1953) 180–186.
[9] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA 27 (1941) 222–224.
[10] R.W. Ibrahim, Generalized Ulam-Hyers stability for fractional differential equations, Int. J. Math. 23 (5) (2012) 9.
[11] R.W. Ibrahim, Ulam stability for fractional differential equation in complex domain, Abstr. Appl. Anal. 2012 (2012) 1–8.
[12] A.A. Killbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North Holland Mathematics Studies, 204 Elsevier, Amsterdam, 2006.
[13] D. Matignon, Stability results for fractional differential equations with applications to control processing, Comput. Engrg. Syst. Appl. 2 (1996) 963–968.
[14] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Willey, New York, 1993.
[15] I. Podlubny, Fractional Differential Equations, Academic Press, San Diago, 1999.
[16] F. Polito and Z. Tomovski, Some properties of Prabhakar-type fractional calculus operators, Fract. Differ. Calc. 6 (2016) 73–94.
[17] Th.M. Rassias, On the stability of linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978) 297–300.
[18] T.O. Salim and O. Faraj, A generalization of Mittag-Leffler function and integral operator associated with the fractional calculus, J. Fract. Calc. Appl. 3(5) (2012) 1–13.
[19] A.K. Shukla and JC. Prajapati, On a generalization of Mittag-Leffler function and its properties, J. Math. Anal. Appl. 336 (2007) 79–81.
[20] S.E. Takahashi, T. Miura and S. Miyajima, On the Hyers-Ulam stability of the Banach-space valued differential equation y0 = λy, Bull. Korean Math. Soc. 39 (2002) 309–315.
[21] S.M. Ulam, A Collection of Mathematical Problems, Interscience Publishers, New York, 1968.
[22] J.R. Wang, L. Lv and Y. Zhou, Ulam stability and data dependence for fractional differential equations with Caputo derivative, Electron. J. Qual. Theory Differ. Equ. 63 (2011) 1–10.
[23] J.R. Wang, Y. Zhou and M. Medved, Existence and stability of fractional differential equations with Hadamard derivative, Topol. Meth. Nonlinear Anal. 41 (2013) 113–133.
[24] A. Wiman, Uber de fundamental satz in der theorie der funktionen, Acta Math. 29 (1905) 191–201.