[1] M. Ansari, M. Ansari and A. Safiey, Evaluation of seismic performance of mid-rise reinforced concrete frames
subjected to far-field and near-field ground motions, 15(8) (2018) 453–462.[2] D. Bindi, M. Picozzi, D. Spallarossa, F. Cotton and S. R. Kotha, Impact of magnitude selection on aleatory
variability associated with ground-motion prediction equations: Part II—analysis of the between-event distribution
in central Italy, Bull. Seis. Soc. Amer. 109(1) (2019) 251—262. doi.org/10.1785/0120180239.
[3] A. Brezger and S. Lang, Generalized structured additive regression based on Bayesian P-Splines, Comput. Stat.
Data Anal. 50 (2006) 967–991.
[4] A. Brezger and S. Lang, Simultaneous Probability statements for Bayesian P-Splines, Stat. Mod. 8 (2008) 141–168.
[5] A. Chaudhuri and S. Chakraborty, Reliability of linear structures with parameter uncertainty under non-stationary
earthquake, Struc. Saf. 28(3) (2006) 231–246.
[6] B. R. Ellingwood, Earthquake risk assessment of building structures, Rel. Engin. Syst. Saf. 74(3) (2001) 251–262,
doi.org/10.1016/S0951-8320(01)00105-3.
[7] S. Ghosh, S. Ghosh and S. Chakraborty, Seismic fragility analysis in the probabilistic performancebased earthquake engineering framework: an overview, Int. J. Adv. Engin. Sci. Appl. Math. (2017).
https://doi.org/10.1007/s12572-017-0200-y
[8] J. Hou, Y. An, S. Wang, Zh. Wang, L. Jankowski and J. Ou, Structural damage localization and quantification
based on additional virtual masses and Bayesian theory, J. Engin. Mech. 144(10) (2018).
[9] F. Jalayer, R. De Risi and G. Manfredi, Bayesian cloud analysis: efficient structural fragility assessment using
linear regression, Bull Earthquake Engin. 13(4) (2015) 1183-–1203.
[10] A. Kaveh, R. Mahdipou Moghanni and S.M. Javadi, Ground notion record selection using multi-objective optimization algorithms: a comparative study, Periodica Polytechnica Civil Engin. 63(3) (2019) 812–822.
[11] Sh. Kwag and A. Gupta, Probabilistic risk assessment framework for structural systems under multiple hazards
using Bayesian statistics, Nuclear Engin. Des. 315 (2017) 20–34.
[12] Sh. Kwag, J. Oh and J. M. Lee, Application of Bayesian statistics to seismic probabilistic safety assessment for
research reactor, Nuclear Engin. Des. 328 (2018) 166–181.
[13] X. X. Liu, ZY. Wu and F. Liang, Multidimensional performance limit state for probabilistic seismic demand
analysis, Bull Earthquake Engin. 14 (2016) 3389—3408.
[14] T. T. Liu, D. G. Lu and X. H. Yu, Development of a compound intensity measure using partial least-squares
regression and its statistical evaluation based on probabilistic seismic demand analysis, Soil Dyn. Earthquake
Engin. 125 (2019) 105725.
[15] L. Macedo and J.M. Castro, SelEQ: An advanced ground motion record selection and scaling framework, Adv.
Engin. Soft. 114 (2017) 32–47.
[16] M. Mahdavi Adeli, A. Deylami, M. Banazadeh and M. M. Alinia, A Bayesian approach to construction of
probabilistic seismic demand models for steel moment-resisting frames, Sci. Iran. 18(4) (2011) 885—894.
[17] M. Mahdavi Adeli, M. Banazadeh, A. Deylami and M.M. Alinia, Introducing a new Spectral intensity measure
parameter to estimate the seismic demand of steel moment-resisting frames using Bayesian statistics, Adv. Struc.
Engin. 15(2) (2016) 231–247.
[18] M. Mahdavi Adeli, M. Banazadeh and A. Deylami, Bayesian approach for determination of drift hazard curves
for generic steel moment-resisting frames in territory of Tehran, Int. J. Civil Engin. 9(3) (2011) 145–154.
[19] M. Maleki, R. Ahmady Jazany, M. S. Ghobadi, Probabilistic Seismic Assessment of SMFs with Drilled Flange Connections Subjected to Near-Field Ground Motions. International Journal of Steel Structures, 19 (2019) 224–240.
https://doi.org/10.1007/s13296-018-0112-0.
[20] R. A. Medina and H. Krawinkler, Evaluation of drift demands for the seismic performance assessment of frames,
J. Struc. Engin. 131(7) (2005) 1003–1013.
[21] M. Onvani and A. Yahyaabadi, Probabilistic seismic demand analysis of steel moment frames by utilizing Bayesian
statistics, European J. Envir. Civil Engin. (2018), DOI: 10.1080/19648189.2018.1538905.
[22] G. J. O’Reilly and G. M. Calvi, Conceptual seismic design in performance-based earthquake engineering, Earthquake Engin. Struc. Dyn. 48(4) (20187) 389–411.
[23] Sh. Shahbazi, I. Mansouri, J. W. Hu, N. Sam Daliri and A. Karami, Seismic response of steel SMFs subjected to
vertical components of far and near-field earthquakes with forward directivity effects, Adv. Civil Engin. (2019).
doi.org/10.1155/2019/2647387.
[24] L. Tian, H. Pan and R. Ma, Probabilistic seismic demand model and fragility analysis of transmission tower
subjected to near-field ground motions, J. Const. Steel Res. 156 (2019) 266–275.
[25] P. Tothong and N. Luco, Probabilistic seismic demand analysis using advanced ground motion intensity measures,
Earthquake Engin. Struc. Dyn. 36(13) (2007) 1837—1860.
[26] D. Vamvatsikos and M. Fragiadakis, Incremental dynamic analysis for estimating seismic performance sensitivity
and uncertainty, Earthquake Engin. Struct. Dyn. 39(2) (2010) 141—163.