[1] M. A. Abdelkawy, E. A. Doha, A. H. Bhrawy, and A. Z. M. Amin, Efficient pseudospectral scheme for 3D integral equations, Roman. Acad. Ser. A. Math. Phys. Tech. Sci. Inf. Sci. 18(3) (2017) 199–206.
[2] M. Abdou, A. Badr and M. Soliman, On a method for solving a two-dimensional nonlinear integral equation of the second kind, J. Comput. Appl. Math. 235(12) (2011) 3589–3598.
[3] R. P. Agarwal, N. Hussain, and M. A. Taoudi, Fixed point theorems in ordered banach spaces and applications to nonlinear integral equations, Abst. Appl. Anal. 2012 (2012).
[4] M. Almousa, The solutions of three dimensional Fredholm integral equations using Adomian decomposition method, AIP Conference Proceedings, 020053, (2016) 020053-1-020053-2.
[5] B. Asady, F. Hakimzadegan, and R. Nazarlue, Utilizing artificial neural network approach for solving twodimensional integral equations, Math. Sci. 8(1) (2014) 1–9.
[6] M. Asgari and R. Ezzati, Using operational matrix of two-dimensional bernstein polynomials for solving twodimensional integral equations of fractional order, Appl. Math. Comput. 307 (2017) 290–298.
[7] K. Atkinson and E. Kendall, The Numerical Solution of Integral Equations of the Second Kind, Cambridge: Cambridge University Press, 2011.
[8] K. Atkinson and F. Potra, Projection and iterated projection methods for nonlinear integral equations, SIAM J. Numerical Anal. 24 (1987) 1352–1373.
[9] I. Aziz, F. Khan, et al, A new method based on haar wavelet for the numerical solution of two-dimensional nonlinear integral equations, J. Comput. Appl. Math. 272 (2014) 70–80.
[10] I. Aziz, S. Islam and W. Khan, Quadrature rules for numerical integration based on Haar wavelets and hybrid functions, Comput. Math. Appl. 61(9) (2011) 2770–2781.
[11] M. Bakhshi, M. Asghari-Larimi and M. Asghari-Larimi, Three dimensional differential transform method for solving nonlinear threedimensional Volterra integral equations, J. Math. Comput. Sci. 4(2) (2012) 246–256.
[12] M. Basseem, Degenerate kernel method for three dimension nonlinear integral equations of the second kind, Universal J. Integ. Eq. 3 (2015) 61–66.
[13] A. M. Bica , M. Curila and S. Curila, About a numerical method of successive interpolations for functional Hammerstein integral equations, J. Comput. Appl. Math. 236(2) (2012) 2005–2024.
[14] A. Boggess and F. J. Narcowich, First Course in Wavelets with Fourier Analyis, Prentice Hall, 2001.
[15] A. H. Borzabadi and O. S. Fard, A numerical scheme for a class of nonlinear fredholm integral equations of the second kind, J. Comput. Appl. Math. 232(2) (2009) 449–454.
[16] H. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential Equations, Cambridge University Press, 2004.
[17] Z. Cheng, Quantum effects of thermal radiation in a Kerr nonlinear blackbody, J. Optical Soc. Amer. B 19 (2002) 1692–1705.
[18] W. C. Chew, M. S. Tong and B. Hu, Integral Equation Methods for Electromagnetic and Elastic Waves, Synthesis Lectures on Comput. Elect. 3(1) (2008) 1–241.
[19] M. Erfanian and H. Zeidabadi, Solving two-dimensional nonlinear mixed Volterra Fredholm integral equations by using rationalized Haar functions in the complex plane, J. Math. Mod. 7(4) (2019) 399–416.
[20] M. Esmaeilbeigi, F. Mirzaee and D. Moazami, Radial basis functions method for solving three-dimensional linear Fredholm integral equations on the cubic domains, Iran. J. Numerical Anal. Opt. 7(2) (2017) 15–37.
[21] S. Fazeli, G. Hojjati and H. Kheiri, A piecewise approximation for linear two-dimensional volterra integral equation by chebyshev polynomials, Int. J. Nonlinear Sci. 16(3) (2013) 255–261.
[22] A. Haar. Zur Theories der orthogonalen Funktionensystem, Math. Annal. 69 (1910) 331–371.
[23] G. Han and R. Wang, Richardson extrapolation of iterated discrete galerkin solution for two-dimensional fredholm integral equations, J. Comput. Appl. Math. 139(1) (2002) 49–63.
[24] G. Hursan and M. S. Zhdanov, Contraction integral equation method in three-dimensional electromagnetic modeling, Radio Sci. 6(37) (2002) 1–13.
[25] S. Islam, I. Aziz and F. Haq, A comparative study of numerical integration based on Haar wavelets and hybrid functions, Comput. Math. Appl. 59(6) (2010) 2026–2036.
[26] M. Kazemi and R. Ezzati, Numerical solution of two-dimensional nonlinear integral equations via quadrature rules and iterative method, Adv. Diff. Eq. Control Proc. 17 (2016) 27–56.
[27] M. Kazemi and R. Ezzati, Existence of solutions for some nonlinear Volterra integral equations via Petryshyn’s fixed point theorem, Int. J. Nonlinear Anal. Appl. 9 (2018) 1–12.
[28] M. Kazemi and R. Ezzati, Existence of solution for some nonlinear two-dimensional volterra integral equations via measures of noncompactness, Appl. Math. Comput. 275 (2016) 165–171.
[29] F. Khan, T. Arshad, A. Ghaffar, K.S. Nisar and D. Kumar, Numerical solutions of 2D Fredholm integral equation of first kind by discretization technique, AIMS Math. 5(3) (2020) 2295–2306.
[30] Ulo. Lepik, ¨ Application of the Haar wavelet transform to solving integral and differential equations, Proc. Estonian Acad. Sci. Phys. Math. 56(1) (2007) 28–46.
[31] J. Majak , B.S. Shvartsman, M. Kirs, M. Pohlak and H. Herranen, Convergence theorem for the Haar wavelet based discretization method, Comp. Struct. 126 (2015) 227–232.
[32] K. Maleknejad, R. Mollapourasl and K. Nouri, Study on existence of solutions for some nonlinear functional–integral equations, Nonlinear Anal. 69 (2008) 2582–2588.
[33] K. Maleknejad, J. Rashidinia and T. Eftekhari, Numerical solution of three-dimentional Voltera- Fredholm integral equations of the first and second kinds based on Bernstein’s approximation, Appl. Math. Comput. 339 (2018) 272–285.
[34] D. S. Mohamed, Shifted Chebyshev polynomials for solving three-dimensional Volterra integral equations of the second kind, arXiv preprint arXiv:1609.08539, 2016.
[35] F. Mirzaee, E. Hadadiyan and S. Bimesl, Numerical solution for three-dimensional nonlinear mixed VolterraFredholm integral equations via three-dimensional block-pulse functions, Appl. Math. Comput. 237 (2014) 168–175.
[36] F. Mirzaee and E. Hadadiyan, A computational method for nonlinear mixed Volterra-Fredholm integral equations, Caspian J. Math. Sci. 2 (2) (2014) 113–123.
[37] F. Mirzaee and E. Hadadiyan, Three-dimensional triangular functions and their applications for solving nonlinear mixed Volterra-Fredholm integral equations, Alexandria Engin. J. 3(55) (2016) 2943–2952.
[38] B. G. Pachpatte, Multidimensional Integral Equations and Inequalities, Springer Science, Business Media, 2011.
[39] K. Sadri, A. Amini and C. Cheng, Low cost numerical solution for three-dimensional linear and nonlinear integral equations via three-dimensional Jacobi polynomials, J. Comput. Appl. Math. 319 (2017) 493–513.
[40] Qi. Tang and D. Waxman, An integral equation describing an asexual population in a changing environment, Nonlinear Anal. Theo. Meth. Appl. 53(5) (2003) 683–699.
[41] S. M. Torabi and A. Tari, Two-step collocation methods for two-dimensional Volterra integral equations of the second kind, J. Appl. Anal. 25(1) (2019) 1–11.
[42] A. Ziqan, S. Armiti and I. Suwan, Solving three- dimensional Volterra integral equation by the reduced differential transform method, Int. J. Appl. Math. Res. 5(2) (2016) 103–106.