[1] F. Cheng, C. Liu, J. Jiang, W. Lu, W. Li, G. Liu, et al., ”Prediction of drug-target interactions and drug repositioning via network-based inference,” PLoS Comput Biol, vol. 8, p. e1002503, 2012.
[2] Y. Deng, X. Xu, Y. Qiu, J. Xia, W. Zhang, and S. Liu, ”A multimodal deep learning framework for predicting drug-drug interaction events,” Bioinformatics, 2020.
[3] A. Ezzat, M. Wu, X.-L. Li, and C.-K. Kwoh, ”Computational prediction of drug–target interactions using chemogenomic approaches: an empirical survey,” Briefings in bioinformatics, vol. 20, pp. 1337-1357, 2019.
[4] A. Ezzat, P. Zhao, M. Wu, X.-L. Li, and C.-K. Kwoh, ”Drug-target interaction prediction with graph regularized matrix factorization,” IEEE/ACM transactions on computational biology and bioinformatics, vol. 14, pp. 646-656, 2016.
[5] A. Ezzat, M. Wu, X.-L. Li, and C.-K. Kwoh, ”Drug-target interaction prediction via class imbalance-aware ensemble learning,” BMC bioinformatics, vol. 17, pp. 267-276, 2016.
[6] S. Fakhraei, B. Huang, L. Raschid, and L. Getoor, ”Network based drug-target interaction prediction with probabilistic soft logic,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 11, pp. 775-787, 2014.
[7] S. G¨unther, M. Kuhn, M. Dunkel, M. Campillos, C. Senger, E. Petsalaki, et al., ”SuperTarget and Matador: resources for exploring drug-target relationships,” Nucleic acids research, vol. 36, pp. D919-D922, 2007.
[8] M. Hattori, Y. Okuno, S. Goto, and M. Kanehisa, ”Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways,” Journal of the American Chemical Society, vol. 125, pp. 11853-11865, 2003.
[9] Z. He, J. Zhang, X.-H. Shi, L.-L. Hu, X. Kong, Y.-D. Cai, et al., ”Predicting drug-target interaction networks based on functional groups and biological features,” PloS one, vol. 5, p. e9603, 2010.
[10] M. Kanehisa, S. Goto, M. Hattori, K. F. Aoki-Kinoshita, M. Itoh, S. Kawashima, et al., ”From genomics to chemical genomics: new developments in KEGG,” Nucleic acids research, vol. 34, pp. D354-D357, 2006.
[11] M. J. Keiser, B. L. Roth, B. N. Armbruster, P. Ernsberger, J. J. Irwin, and B. K. Shoichet, ”Relating protein pharmacology by ligand chemistry,” Nature biotechnology, vol. 25, pp. 197-206, 2007.
[12] M. A. Kumar and M. Gopal, ”A hybrid SVM based decision tree,” Pattern Recognition, vol. 43, pp. 3977-3987, 2010.
[13] H. Li, Z. Gao, L. Kang, H. Zhang, K. Yang, K. Yu, et al., ”TarFisDock: a web server for identifying drug targets with docking approach,” Nucleic acids research, vol. 34, pp. W219-W224, 2006.
[14] A. Mongia and A. Majumdar, ”Drug-target interaction prediction using Multi Graph Regularized Nuclear Norm Minimization,” Plos one, vol. 15, p. e0226484, 2020.
[15] A. Mongia, V. Jain, E. Chouzenoux, and A. Majumdar, ”Deep Latent Factor Model for Predicting Drug Target Interactions,” in ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, pp. 1254-1258.
[16] K. Sachdev and M. K. Gupta, ”A comprehensive review of feature based methods for drug target interaction prediction,” Journal of biomedical informatics, vol. 93, p. 103159, 2019.
[17] K. Sachdev and M. K. Gupta, ”A hybrid ensemble-based technique for predicting drug–target interactions,” Chemical Biology & Drug Design, 2020.
[18] I. Schomburg, A. Chang, C. Ebeling, M. Gremse, C. Heldt, G. Huhn, et al., ”BRENDA, the enzyme database: updates and major new developments,” Nucleic acids research, vol. 32, pp. D431-D433, 2004.
[19] T. F. Smith and M. S. Waterman, ”Identification of common molecular subsequences,” Journal of molecular biology, vol. 147, pp. 195-197, 1981.
[20] M. A. Thafar, R. S. Olayan, H. Ashoor, S. Albaradei, V. B. Bajic, X. Gao, et al., ”DTiGEMS+: drug–target interaction prediction using graph embedding, graph mining, and similarity-based techniques,” Journal of Cheminformatics, vol. 12, pp. 1-17, 2020.
[21] T. Van Laarhoven and E. Marchiori, ”Predicting drug-target interactions for new drug compounds using a weighted nearest neighbor profile,” PloS one, vol. 8, p. e66952, 2013.
[22] D. S. Wishart, C. Knox, A. C. Guo, D. Cheng, S. Shrivastava, D. Tzur, et al., ”DrugBank: a knowledgebase for drugs, drug actions and drug targets,” Nucleic acids research, vol. 36, pp. D901-D906, 2008.
[23] Y. Yamanishi, M. Araki, A. Gutteridge, W. Honda, and M. Kanehisa, ”Prediction of drug–target interaction networks from the integration of chemical and genomic spaces,” Bioinformatics, vol. 24, pp. i232-i240, 2008.
[24] M. A. Yıldırım, K.-I. Goh, M. E. Cusick, A.-L. Barab´asi, and M. Vidal, ”Drug—target network,” Nature biotechnology, vol. 25, pp. 1119-1126, 2007.
[25] H. Yu, J. Chen, X. Xu, Y. Li, H. Zhao, Y. Fang, et al., ”A systematic prediction of multiple drug-target interactions from chemical, genomic, and pharmacological data,” PloS one, vol. 7, p. e37608, 2012.
[26] X. Zheng, H. Ding, H. Mamitsuka, and S. Zhu, ”Collaborative matrix factorization with multiple similarities for predicting drug-target interactions,” in Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, 2013, pp. 1025-1033.