[1] A. S. Alasadi and S. W. Bhaya. “Review of data preprocessing techniques in data mining, J. Engin. Appl. Sci. 12(16) (2017) 4102—4107.
[2] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts and P. Walter, Molecular Biology of the Cell, 4th Edn, New York: Garland Science, 2002.
[3] H. Abusamra, A comparative study of feature selection and classification methods for gene expression data, Procedia Comput. Sci. 23 (2013) 5–14.
[4] M. M. Babu, Introduction to microarray data analysis, Comput. Genom. Theo. Appl. 17(6) (2004) 225–49.
[5] A. L. Boulesteix, S. Janitza, J. Kruppa and R. Inke K¨onig, “Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Disc. 2(6) (2012) 493–507.
[6] A. Brazma and J. Vilo, Gene expression data analysis, FEBS Lett. 480(1) (2000) 17-–24.
[7] S. Cui, E. Youn, J. Lee and S. J. Maas, An improved systematic approach to predicting transcription factor target genes using support vector machine, Phys. Med. 9(4) (2014) ID: 16917899.
[8] K. Das, Kaberi, J. Ray and D. Mishra, Gene selection using information theory and statistical approach, Indian J. Sci. Tech. 8(8) (2015) 695—701.
[9] H. Kazan, Modeling gene regulation in liver hepatocellular carcinoma with random forests, BioMed Res. Int. 2016 (2016) Article ID 1035945.
[10] T. I. Lee and et al. Transcriptional regulatory networks in saccharomyces cerevisiae, Sci. 298(5594) (2002) 799–804.
[11] X. Liu, A. Krishnan and A. Mondry, An entropy-based gene selection method for cancer classification using microarray data, BMC Bioinfo. 6(1) (2005) N. 76.
[12] W. Meng, C. Tai, E. Weinan and L. Wei, DeFine: Deep convolutional neural networks accurately quantify intensities of transcription factor-DNA binding and facilitate evaluation of functional non-coding variants, Nuc. Acids Res. 46(11) (2018) 69–69.
[13] M. Niklas and G. Mariana, Definition of Historical Models of Gene Function and Their Relation to Students, Understanding of Genetics, 2007.
[14] R. D. Pearson, X. Liu, G. Sanguinetti, M. Milo, N. D. Lawrence and M. Rattray, Puma: A bioconductor package for propagating uncertainty in microarray analysis, BMC Bioinfo. 10(1) (2009) N. 211.
[15] F. Petralia, P. Wang, J. Yang and Tu. Zhidong, Integrative random forest for gene regulatory network inference, Bioinfo. 31(12) (2015) 197—205.
[16] P. Refaeilzadeh, L. Tang and H. Liu, Cross-validation. Encyclopedia of Database Systems, (2009) 532–538.
[17] F. Rafii, M. A. Kbir and B. D. R. Hassani, Microarray data preprocessing to improve exploration on biological databases, Int. Conf. on Big Data, Cloud and Applications, Tetuan, Morocco, 2015, pp. 25-–26.
[18] S. Slater, S. Joksimovic, V. Kovanovic, B. Vitomir, S. Ryan and D. Gasevic, Tools for educational data mining: A Review, J. Educ. Behav. Stat. 42(1) (2017) 85–106.
[19] T. Schlitt and P. Kemmeren, From microarray data to results, EMBO Rep. 5(5) (2004) 459-–463.
[20] P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen, P. O. Brown, D. Botstein and B. Futcher, Comprehensive identification of cell cycle–regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization, 9(12) (1998) 3259–3578.
[21] M. Sokolova, N. Japkowicz and S. Szpakowicz. Beyond accuracy, F-score and ROC: A family of discriminant measures for performance evaluation, Aust Joint Conf. Artif. Intel. Springer, 2006 pp. 1015-1021.
[22] P.-N. Tan, M. Steinbach and V. Kumar. Introduction to Data Mining, Pearson Education India, 2006.
[23] W. Wang and Lu. Yanmin, Analysis of the mean absolute error (MAE) and the root mean square error (RMSE) in assessing rounding model, IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2018, 12049.
[24] C. C. Xiang and Y. Chen. cDNA microarray technology and its applications, Biotech. Adv. 18(1) (2000) 35–46.
[25] W. Zhongxin, S. Gang, Z. Jing and Z. Jia, Feature selection algorithm based on mutual information and Lasso for microarray data, Open Biotech. J. 10 (2016) 278–286.