[1] N. D. Ahmadi, M. S. Nikabadi, A non-linear multi objective model for the product portfolio optimization: An integer programming, Int. J. Nonlinear Anal. Appl. 8(2) (2019) 231–239.
[2] R. Ezzati, S. Abbasbandy and H. Behforooz, Interpolation of fuzzy data by using at end fuzzy splines, Int. J. Nonlinear Anal. Appl. 8(2) (2017) 89–97.
[3] P. M. Ghare and G. H. Schrader, A model for exponentially decaying inventory system,J. Ind. Engrg. 14 (1963) 238–243.
[4] S. K. Goyal and B. C. Giri, Recent trends in modeling of deteriorating inventory, Eur. J. Oper. Res. 134(10) (2001) 1–16.
[5] P. H. Hsu, H. M. Wee and H. M. Teng, Preservation technology investment for deteriorating inventory, Int. J. Prod. Econ. 124(2) (2010) 388–394.
[6] R. Kazemi and M. Q. V. Asl, Probabilistic analysis of the asymmetric digital search trees, Int. J. Non-linear Anal. Appl. 6(2) (2015) 161–173.
[7] U. K. Khedlekar, D. Shukla and A. Namdeo Pricing policy for declining demand using item preservation technology, SpringerPlus 5(1) (2016) 19–57.
[8] L. Lu, J. Zhang and W. Tang, Optimal dynamic pricing and replenishment policy for perishable items with inventory-level-dependent demand, Int. J. Sys. Sci. 47(6) (2016) 1480–1494.
[9] G. Liu, J. Zhang and W. Tang, Joint dynamic pricing and investment strategy for perishable foods with pricequality dependent demand, Ann. of Oper. Res. 226(1) (2015) 397–416.
[10] U. Mishra, L. E. Barron, S. Tiwari, A. A. Shaikh and G. T. Garza,An inventory model under price and stock dependent demand for controllable deterioration rate with shortage and preservation technology investment, Ann. Oper. Res. 254(2) (2017) 165–190.
[11] V. K. Mishra, Deteriorating inventory model with controllable deterioration rate for time dependent demand and time varying holding cost, Yugosl. J. Oper. Res. 24(1) (2014) 87-–98.
[12] M. Nadjafikhah and S. Shagholi, Mathematical modeling of optimized SIRS epidemic model and some dynamical behaviors of the solution, Int. J. Nonlinear Anal. Appl. 8(2) (2017) 125–134.
[13] S. Pal, G. S. Mahapatra and G.P. Samanta, An inventory model of price and stock dependent demand rate with deterioration under in nation and delay in payment, Int. J. Sys. Ass. Eng. Manag. 5(4) 2014 591–601.
[14] N. H. Shah and A. D. Shah, Optimal cycle time and preservation technology investment for deteriorating items with price-sensitive stock-dependent demand under inflation, J. Phy.: Conf. Ser. 495(1) (2014) 1–10.
[15] K. S. Wu, L. Y. Ouyang and C. T. Yang, An optimal replenishment policy for non- instantaneous deteriorating items with stock-dependent demand and partial backlogging, Int. J. Prod. Econ. 101(2) (2006) 369–384.
[16] H. M. Wee, A deterministic lot-size inventory model for deteriorating items with shortages and a declining market, Comp Oper. Res. 22(3) (1995) 345–356.
[17] C. T. Yang, C. Y. Dye and J. F. Ding, Optimal dynamic trade credit and preservation technology allocation for a deteriorating inventory model,Comp. Ind. Eng. 87 (2015) 356–369.
[18] P. S. You, Inventory policy for products with price and time-dependent demands,J. Oper. Res. Soc. 56(7) (2005). 870–873.
[19] J. X. Zhang, Z. Y. Bai and W. S. Tang, Optimal pricing policy for deteriorating items with preservation technology investment, J. Ind. Manag. Optim. 10(4) (2014) 1261–1277.
[20] J. Zhang, Q. Wei, Q. Zhang and W. Tang, Pricing, service and preservation technology investments policy for deteriorating items under common resource constraints, Comp. Ind. Eng. 95 (2016) 1–9.
[21] G. Zauberman, R. Ronen, M. Akerman and Y. Fuchs, Low PH treatment protects litchi fruit color, Int. Soc. Hort. Sci. 269, (1989) 309–314.