[1] O. Acar, V. Berinde and I. Altun, Fixed point theorems for C`iric`-type strong almost contractions on partial metric spaces, J. Fix. Point Theory A. 12 (2012) 247–259.
[2] L. Budhia, P. Kumam, JM. Moreno and D. Gopal, Extensions of almost-F and F-Suzuki contractions with graph and some applications to fractional calculus, Fixed Point Theory A. 2016(2) (2016) doi 10.1186/s13663-015-0480-5.
[3] V. Berinde, Approximating fixed points of weak contractions using the Picard iteration, Nonlinear Anal. Forum. 9 (2004) 43–53.
[4] V. Berinde, General constructive fixed point theorems for C`iric`-type almost contractions in metric spaces, Carpathian J. Math. 24 (2008) 10–19.
[5] S. Chandok, Some common fixed point results for rational type contraction mappings in partially ordered metric spaces, Math. Bohemica 138(4) (2013) 403–413.
[6] S. Chandok, BS. Choudhury and N. Metiya, Some fixed point results in ordered metric spaces for rational type expressions with auxiliary functions, J. Egyptian Math. Soc. 23(1) (2015) 95–101.
[7] S. Chandok and K. Tas, An original coupled coincidence point result for a pair of mappings without MMP, J. Inequal. Appl. 2014:61 (2014):doi.org/10.1186/1029-242X-2014-61.
[8] K. Harwood, Modeling a RLC circuits current with differential equations, (2011)
http://home2.fvcc.edu /dhicketh/DiffEqns/Spring11projects/Kenny Harwood/ACT7/temp.pdf.
[9] E. Karapinar, W. Shatanawi and K. Tas, Fixed point theorem on partial metric spaces involving rational expressions, Miskolc Math. Notes 14 (2013) 135–142.
[10] E. Karapinar and IM. Erhan, Fixed point theorems for operators on partial metric spaces, Appl. Math. Lett. 24 (2011) 1894–1899.
[11] E. Karapinar, Generalizations of Caristi Kirk’s Theorem on partial metric spaces, Fixed Point Theory A. 2011(4) (2011):doi 10.1186/1687-1812-2011-4.
[12] SG. Matthews, Partial metric topology, Department of Computer Science, University of Warwick, (1992) Research Report 212.
[13] SG. Matthews, Partial metric topology, Proceedings of the 8th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci. 728 (1994) 183–197.
[14] G. Minak, A. Helvac and I. Altun, C`iric` type generalized F-contractions on complete metric spaces and fixed point results, Filomat 28(6) (2014) 1143–1151.
[15] H. Piri and P. Kumam, Wardowski type fixed point theorems in complete metric spaces, Fixed Point Theory A. 2016(45) (2016) doi:10.1186/s13663-016-0529-0.
[16] S. Romaguera, A Kirk type characterization of completeness for partial metric spaces, Fixed Point Theory A. 2010:493298 (2010) doi.org/10.1155/2010/493298.
[17] S. Samet, M. Rajovi`c, R. Lazovi`c and R. Stojiljkovi`c, Common fixed point results for nonlinear contractions in ordered partial metric spaces, Fixed Point Theory A. 2011(71) (2011) doi. 10.1186/1687-1812-2011-71.
[18] W. Shatanawi, B. Samet and M. Abbas, Coupled fixed point theorems for mixed monotone mappings in ordered partial metric spaces, Math. Comput. Modelling 55(3-4) (2012) 680–687.
[19] B. Samet, C. Vetro and P. Vetro, Fixed point theorems for α-ψ-contractive type mappings, Nonlinear Anal. 75 (2012) 2154–2165.
[20] A. Tomar, Giniswamy, C. Jeyanthi and PG. Maheshwari, Coincidence and common fixed point of F-contractionsm via CLRST property, Surv. Math. Appl. 11 (2016) 21–31.
[21] A. Tomar, Giniswamy, C. Jeyanthi and PG. Maheshwari, On coincidence and common fixed point of six maps satisfying F-contractions, TWMS J. App. Eng. Math. 6(2) (2016) 224–231.
[22] A. Tomar, S. Beloul, R. Sharma and S. Upadhyay, Common fixed point theorems via generalized condition (B) in quasi-partial metric space and applications, Demonstr. Math. 50(1) (2017) 278–298.
[23] D. Wardowski, Fixed points of new type of contractive mappings in complete metric space Fixed Point Theory A. 2012(94) (2012) doi:10.1186/1687-1812-2012-94.
[24] D. Wardowski and NV. Dung, Fixed points of F-weak contractions on complete metric space, Demonstratio Maths. 47 (2014) 146–155.