[1] D. Bajovi´c, Z. D. Mitrovi´c and M. Saha, Remark on contraction principle in conetvs b-metric spaces, J Anal. 29 (2021) 273-–280.
[2] I. Beg, A. K. Laha and M. Saha, Coincidence point of isotone mappings in partially ordered metric space, Rend. Circ. Math. Palermo, (2016), doi:10.1007/S12215016-0232-3.
[3] D. Dey and M. Saha, An extension of Banach fixed point theorem in Fuzzy metric space, Bol. Sociedade Paranaense Mat. 32(1) (2014) 299–304.
[4] D. Dey and M. Saha, Common fixed point theorems in a complete 2-metric space, Acta Univ. Palackianae Olomucensis, Facultas Rerum Naturalium, Math. 52(1) (2013) 79–87.
[5] D. Dey, K. Roy and M. Saha, On generalized contraction principles over S−metric spaces with application to homotopy, J. New Theory, 31 (2020) 95–103.
[6] D. Dey, R. Fierro and M. Saha, Well-posedness of fixed point problems, J. Fixed Point Theory Appl. doi.org/10.1007/s11784-018-0538-i, Springer (2018).
[7] M. Gangopadhyay, A. P. Baisnab and M. Saha, Expansive mappings and their fixed points in a vector metric space, Int. J. Math. Arc. 4(8) (2013) 147–153.
[8] M. Gangopadhyay, M. Saha and A. P. Baisnab, Some fixed point theorems in Partial metric spaces, Turkic World Math. Soc. J. App. Eng. Math. 3(2) (2013) 206–213.
[9] M. Jleli and B. Samet, A generalized metric space and related fixed point theorems, Fixed Point Theory Appl. (2015), doi:10.1186/s13663-015-0312-7.
[10] A. K. Laha and M. Saha, Fixed point on α − ψ multivalued contractive mappings in cone metric space, Acta Comm. Univ. Tartuensis Math. 20(1) (2016) 35–43.
[11] A. K. Laha and M. Saha, Fixed point for a class of set valued mappings on a metric space endowed with a graph, ROMAI J. 11(1) (2015) 115–129.
[12] A. Mutlu and U. G¨urdal, Bipolar metric spaces and some fixed point theorems, J. Nonlinear Sci. Appl. 9 (2016) 5362–5373.
[13] A. Mutlu, K. O¨zkan and U. G¨urdal, Coupled fixed point theorems on bipolar metric spaces, European J. Pure Appl. Math. 10(4) (2017) 655–667.
[14] K. Roy, M. Saha and I. Beg, Fixed point of contractive mappings of integral type over an S JS−metric space,
Tamkang J. Math. DOI:10.5556/j.tkjm.52.2021.3298, online published.
[15] K. Roy and M. Saha, Fixed points of mappings over a locally convex topological vector space and Ulam-Hyers stability of fixed point problems, Novi Sad J. Math. 50(1) (2020) 99–112.
[16] K. Roy and M. Saha, Generalized contractions and fixed point theorems over bipolar conetvs b−metric spaces with an application to homotopy theory, Mat. Vesnik, 72(4) (2020) 281–296.
[17] K. Roy and M. Saha, On fixed points of C´iric´-type contractive mappings over a C∗−algebra valued metric space
and Hyers-Ulam stability of fixed point problems, J. Adv. Math. Stud. 12(3) (2019) 350-363.
[18] M. Saha and R. Chikkala, Fixed point theorem over a quasi metric space, South East Asian J. Math. Math. Sci. 8(2) (2010) 61–67.